

 $Head \ to \underline{www.savemyexams.com} \ for \ more \ awe some \ resources$

DP IB Maths: AI SL

4.6 Normal Distribution

Contents

- * 4.6.1 The Normal Distribution
- * 4.6.2 Calculations with Normal Distribution

4.6.1 The Normal Distribution

Your notes

Properties of Normal Distribution

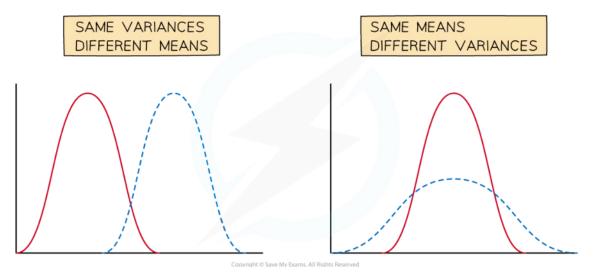
The binomial distribution is an example of a discrete probability distribution. The normal distribution is an example of a **continuous** probability distribution.

What is a continuous random variable?

- A continuous random variable (often abbreviated to CRV) is a random variable that can take any value within a range of infinite values
 - Continuous random variables usually measure something
 - For example, height, weight, time, etc

What is a continuous probability distribution?

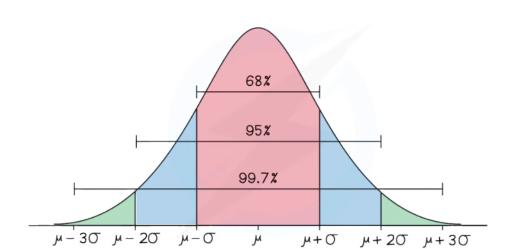
- ullet A continuous probability distribution is a probability distribution in which the random variable X is continuous
- ullet The probability of X being a particular value is always zero
 - P(X=k)=0 for any value k
 - Instead we define the **probability density function** f(x) for a specific value
 - This is a function that describes the **relative likelihood** that the random variable would be close to that value
 - We talk about the **probability** of X being within a **certain range**
- A continuous probability distribution can be represented by a continuous graph (the values for X along the horizontal axis and probability **density** on the vertical axis)
- The area under the graph between the points x=a and x=b is equal to $P(a \le X \le b)$
 - The total area under the graph equals 1
- As P(X=k)=0 for any value k, it does not matter if we use strict or weak inequalities
 - $P(X \le k) = P(X \le k)$ for any value k when X is a **continuous random variable**


What is a normal distribution?

- A normal distribution is a continuous probability distribution
- The **continuous random variable** X can follow a normal distribution if:
 - The distribution is symmetrical
 - The distribution is bell-shaped
- If X follows a normal distribution then it is denoted $X \sim N(\mu, \sigma^2)$
 - *u* is the **mean**
 - σ^2 is the **variance**
 - σ is the **standard deviation**
- If the mean changes then the graph is translated horizontally

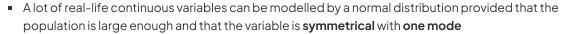
Head to www.savemyexams.com for more awesome resources

- If the variance increases then the graph is widened horizontally and made shorter vertically to maintain the same area
 - A **small variance** leads to a **tall** curve with a **narrow** centre
 - A large variance leads to a short curve with a wide centre


What are the important properties of a normal distribution?

- The **mean** is μ
- The **variance** is σ^2
 - If you need the **standard deviation** remember to square root this
- The normal distribution is symmetrical about $X = \mu$
 - Mean = Median = Mode = μ
- There are the results:
 - Approximately **two-thirds (68%)** of the data lies within **one standard deviation** of the mean $(\mu \pm \sigma)$
 - Approximately **95%** of the data lies within **two standard deviations** of the mean $(\mu \pm 2\sigma)$
 - Nearly all of the data (99.7%) lies within three standard deviations of the mean ($\mu \pm 3\sigma$)

 $Head \ to \underline{www.savemyexams.com} \ for more \ awe some \ resources$



Head to www.savemyexams.com for more awesome resources

Modelling with Normal Distribution

What can be modelled using a normal distribution?

- For a normal distribution X can take any real value, however values far from the mean (more than 4 standard deviations away from the mean) have a probability density of **practically zero**
 - This fact allows us to model variables that are not defined for all real values such as height and weight

What can not be modelled using a normal distribution?

- Variables which have more than one mode or no mode
 - For example: the number given by a random number generator
- Variables which are not symmetrical
 - For example: how long a human lives for

Examiner Tip

• An exam question might involve different types of distributions so make it clear which distribution is being used for each variable

Head to www.savemyexams.com for more awesome resources

Worked example

The random variable S represents the speeds (mph) of a certain species of cheetahs when they run. The variable is modelled using $N(40,\,100)$.

Write down the mean and standard deviation of the running speeds of cheetahs.

$$\mu$$
= 40 and σ^2 = 100

Square root to get standard deviation

b) State two assumptions that have been made in order to use this model.

- symmetricalbell-shaped

4.6.2 Calculations with Normal Distribution

Your notes

Calculating Normal Probabilities

Throughout this section we will use the random variable $X \sim N(\mu, \sigma^2)$. For X distributed normally, X can take any real number. Therefore any values mentioned in this section will be assumed to be real numbers.

How do I find probabilities using a normal distribution?

- The area under a normal curve between the points X = a and X = b is equal to the probability P(a < X < b)
 - Remember for a normal distribution you do not need to worry about whether the inequality is strict
 (< or >) or weak (≤ or ≥)
 - $P(a < X < b) = P(a \le X \le b)$
- You will be **expected to use** distribution functions on your **GDC** to find the probabilities when working with a normal distribution

How do I calculate P(X = x): the probability of a single value for a normal distribution?

- The probability of a **single value** is **always zero** for a normal distribution
 - You can picture this as the area of a single line is zero
- P(X=x)=0
- Your GDC is likely to have a "Normal Probability Density" function
 - This is sometimes shortened to NPD, Normal PD or Normal Pdf
 - **IGNORE THIS FUNCTION** for this course!
 - This calculates the probability density function at a point NOT the probability

How do I calculate P(a < X < b): the probability of a range of values for a normal distribution?

- You need a GDC that can calculate cumulative normal probabilities
- You want to use the "Normal Cumulative Distribution" function
 - This is sometimes shortened to NCD, Normal CD or Normal Cdf
- You will need to enter:
 - The 'lower bound' this is the value a
 - The 'upper bound' this is the value b
 - The ' μ ' value this is the mean
 - The ' σ ' value this is the standard deviation
- Check the order carefully as some calculators ask for standard deviation before mean
 - Remember it is the standard deviation
 - so if you have the variance then square root it
- Always sketch a quick diagram to visualise which area you are looking for

How do I calculate P(X > a) or P(X < b) for a normal distribution?

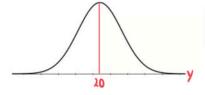
- You will still use the "Normal Cumulative Distribution" function
- ${\bf P}(X>a)$ can be estimated using an **upper bound that is sufficiently bigger** than the **mean**
 - Using a value that is more than 4 standard deviations **bigger than the mean** is quite accurate
 - Or an easier option is just to input lots of 9's for the upper bound (999999999... or 10⁹⁹)
- P(X < b) can be estimated using a **lower bound that is sufficiently smaller** than the **mean**
 - Using a value that is more than 4 standard deviations **smaller than the mean** is quite accurate
 - Or an easier option is just to input lots of 9's for the lower bound with a negative sign (-999999999... or -10⁹⁹)

Are there any useful identities?

- $P(X < \mu) = P(X > \mu) = 0.5$
- As P(X=a)=0 you can use:
 - P(X < a) + P(X > a) = 1
 - P(X > a) = 1 P(X < a)
 - P(a < X < b) = P(X < b) P(X < a)
- These are useful when:
 - The mean and/or standard deviation are unknown
 - You only have a diagram
 - You are working with the inverse distribution

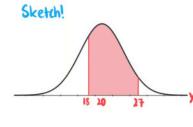
Examiner Tip

• Check carefully whether you have entered the standard deviation or variance into your GDC



The random variable $Y\!\sim\!N(20,\!5^2)$. Calculate:

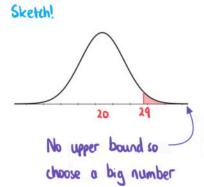
i) P(Y=20).


Identify
$$\mu$$
 and σ
 $\mu = 20$ $\sigma^2 = 5^2$ so $\sigma = 5$

Sketch!

P(Y=20)=0

ii) $P(18 \le Y < 27)$.



Using GDC Lower = 18 Upper = 27 We can use

P(18 < Y < 27) = 0.574665...

0.575 (3sf)

iii) P(Y>29)

Using aDC Lower = 29

Upper = 99999

P(Y>29) = 0.035930...

0.0359 (3sf)

Inverse Normal Distribution

Given the value of P(X < a) how do I find the value of a?

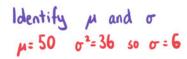
- Your GDC will have a function called "Inverse Normal Distribution"
 - Some calculators call this InvN
- Given that P(X < a) = p you will need to enter:
 - The 'area' this is the value p
 - Some calculators might ask for the 'tail' this is the left tail as you know the area to the left of a
 - The 'µ' value this is the mean
 - The ' σ ' value this is the standard deviation

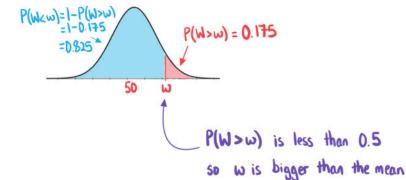
Given the value of P(X > a) how do I find the value of a?

- If your calculator **does** have the **tail option** (left, right or centre) then you can use the "Inverse Normal Distribution" function straightaway by:
 - Selecting 'right' for the tail
 - Entering the area as 'p'
- If your calculator **does not** have the **tail option** (left, right or centre) then:
 - Given P(X > a) = p
 - Use P(X < a) = 1 P(X > a) to rewrite this as
 - P(X < a) = 1 p
 - Then use the **method for P(X < a)** to find a

Examiner Tip

- Always check your answer makes sense
 - If P(X < a) is less than 0.5 then a should be smaller than the mean
 - If P(X < a) is more than 0.5 then a should be bigger than the mean
 - A sketch will help you see this




Worked example

The random variable $W \sim N(50, 36)$.

Find the value of W such that P(W > W) = 0.175.

Sketch!

Area from left is 0.825

Use Inverse Normal Distribution function on GDC

w= 55.6075 ...

 $\omega = 55.6 \ (3sf)$

