

4.5 Binomial Distribution

Contents

- ✤ 4.5.1 The Binomial Distribution
- ✤ 4.5.2 Calculating Binomial Probabilities

4.5.1 The Binomial Distribution

Properties of Binomial Distribution

What is a binomial distribution?

- A binomial distribution is a **discrete probability distribution**
- A discrete random variable X follows a binomial distribution if it counts the number of successes when an experiment satisfies the following conditions:
 - There are a fixed finite number of trials (n)
 - The outcome of each trial is **independent** of the outcomes of the other trials
 - There are exactly two outcomes of each trial (success or failure)
 - The probability of success is constant (p)
- If X follows a binomial distribution then it is denoted $X \sim \mathrm{B}(n, p)$
 - *n* is the **number of trials**

- p is the probability of success
- The probability of failure is 1 p which is sometimes denoted as q
- The formula for the probability of **r successful trials** is given by:

•
$$P(X=r) = {}^{n}C_{r} \times p^{r}(1-p)^{n-r}$$
 for $r=0, 1, 2, ..., n$

$${}^{n}C_{r} = \frac{n!}{r!(n-r)!} \text{ where } n! = n \times (n-1) \times (n-2) \times \dots \times 3 \times 2 \times 1$$

• You will be expected to use the distribution function on your **GDC to calculate probabilities** with the binomial distribution

What are the important properties of a binomial distribution?

The expected number (mean) of successful trials is

$$\mathrm{E}(X) = np$$

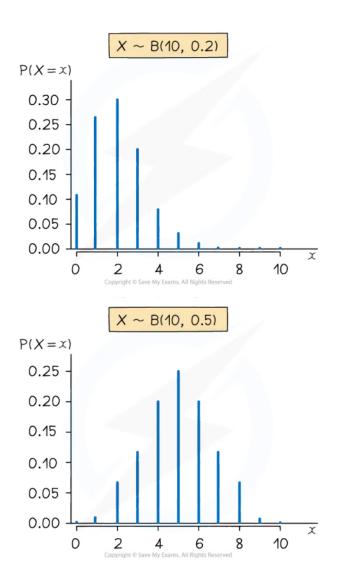
- You are given this in the **formula booklet**
- The variance of the number of successful trials is

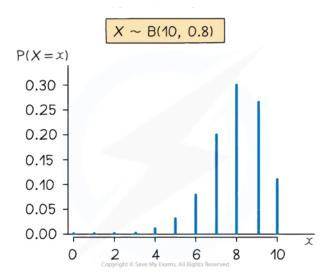
$$\operatorname{Var}(X) = np(1-p)$$

- You are given this in the **formula booklet**
- Square root to get the standard deviation
- The distribution can be represented visually using a vertical line graph
 - If p is close to 0 then the graph has a tail to the right
 - If p is close to 1 then the graph has a tail to the left
 - If p is close to 0.5 then the graph is roughly symmetrical
 - If p = 0.5 then the graph is symmetrical

Page 2 of 12

Save My Exams





Modelling with Binomial Distribution

How do I set up a binomial model?

- Identify what a trial is in the scenario
 - For example: rolling a dice, flipping a coin, checking hair colour
- Identify what the successful outcome is in the scenario
 - For example: rolling a 6, landing on tails, having black hair
- Identify the parameters
 - *n* is the number of trials and *p* is the probability of success in each trial
- Make sure you clearly state what your random variable is
 - For example, let X be the number of students in a class of 30 with black hair

What can be modelled using a binomial distribution?

- Anything that satisfies the four conditions
- For example: let T be the number of times a fair coin lands on tails when flipped 20 times:
 - A trial is flipping a coin: There are 20 trials so **n** = **20**
 - We can assume each coin flip does not affect subsequent coin flips: they are **independent**
 - A success is when the coin lands on tails: **Two outcomes** tails or not tails (heads)
 - The coin is fair: The probability of tails is constant with **p** = **0.5**
- Sometimes it might seem like there are more than two outcomes
 - For example: let Y be the number of yellow cars that are in a car park full of 100 cars
 - Although there are more than two possible colours of cars, here the trial is whether a car is yellow so there are two outcomes (yellow or not yellow)
 - Y would still need to fulfil the other conditions in order to follow a binomial distribution
- Sometimes a sample may be taken from a population
 - For example: 30% of people in a city have blue eyes, a sample of 30 people from the city is taken and X is the number of them with blue eyes
 - As long as the population is large and the sample is random then it can be assumed that each person has a 30% chance of having blue eyes

What can not be modelled using a binomial distribution?

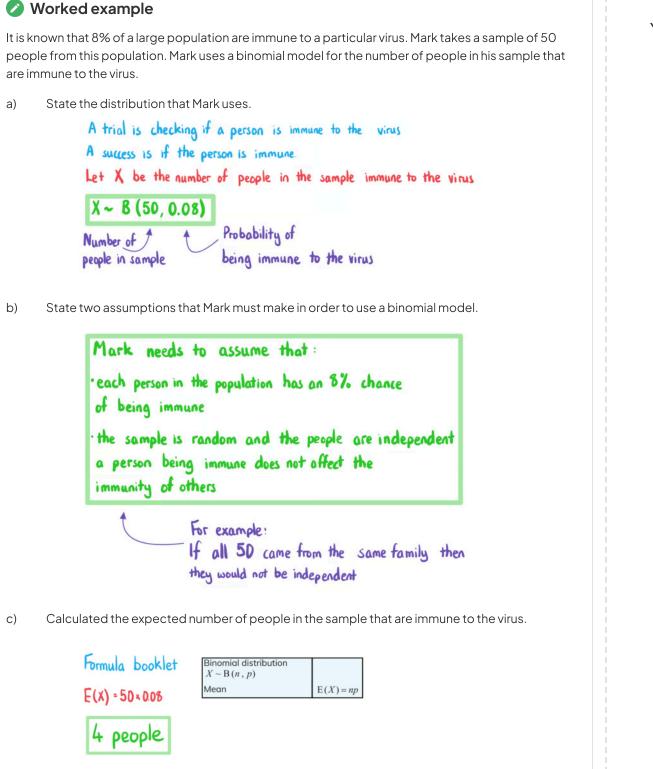
- Anything where the number of trials is **not fixed** or is **infinite**
 - The number of emails received in an hour
 - The number of times a coin is flipped until it lands on heads
- Anything where the outcome of **one trial affects** the outcome of the **other trials**
 - The number of caramels that a person eats when they eat 5 sweets from a bag containing 6 caramels and 4 marshmallows
 - If you eat a caramel for your first sweet then there are less caramels left in the bag when you choose your second sweet
 - Anything where there are **more than two outcomes** of a trial
 - A person's shoe size
 - The number a dice lands on when rolled

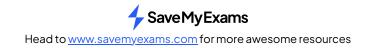
Page 5 of 12

- Anything where the probability of success changes
 - The number of times that a person can swim a length of a swimming pool in under a minute when swimming 50 lengths
 - The probability of swimming a lap in under a minute will decrease as the person gets tired
 - The probability is **not constant**

Examiner Tip

• An exam question might involve different types of distributions so make it clear which distribution is being used for each variable





4.5.2 Calculating Binomial Probabilities

Calculating Binomial Probabilities

Throughout this section we will use the random variable $X \sim B(n, p)$. For binomial, the probability of X taking a non-integer or negative value is always zero. Therefore any values of X mentioned in this section will be assumed to be non-negative integers.

How do I calculate P(X = x): the probability of a single value for a binomial distribution?

- You should have a GDC that can calculate binomial probabilities
- You want to use the "Binomial Probability Distribution" function
 - This is sometimes shortened to BPD, Binomial PD or Binomial Pdf
- You will need to enter:

.

- The 'x' value the value of x for which you want to find P(X = x)
- The 'n' value the **number of trials**
- The 'p' value the **probability of success**
- Some calculators will give you the option of **listing the probabilities** for **multiple values of x at once**
- There is a formula that you can use but you are expected to be able to use the distribution function on your GDC

•
$$P(X=x) = {}^{n}C_{x} \times p^{x}(1-p)^{n-x}$$

$${}^{n}\mathrm{C}_{x} = \frac{n!}{r!(n-r)!}$$

How do I calculate $P(a \le X \le b)$: the cumulative probabilities for a binomial distribution?

- You should have a GDC that can calculate cumulative binomial probabilities
 - Most calculators will find $P(a \le X \le b)$
 - Some calculators can only find $P(X \le b)$
 - The identities below will help in this case
- You should use the "Binomial Cumulative Distribution" function
 - This is sometimes shortened to BCD, Binomial CD or Binomial Cdf
- You will need to enter:
 - The lower value this is the **value a**
 - This can be zero in the case $P(X \le b)$
 - The upper value this is the **value b**
 - This can be *n* in the case $P(X \ge a)$
 - The 'n' value the **number of trials**
 - The 'p' value the probability of success

How do I find probabilities if my GDC only calculates $P(X \le x)$?

Page 9 of 12

SaveMyExams

- To calculate $P(X \le x)$ just enter x into the cumulative distribution function
- To calculate P(X < x) use:</p>
 - P(X < x) = P(X ≤ x − 1) which works when X is a binomial random variable
 P(X < 5) = P(X ≤ 4)
- To calculate P(X > x) use:
 - P(X > x) = 1 P(X ≤ x) which works for any random variable X
 P(X > 5) = 1 P(X ≤ 5)
- To calculate $P(X \ge x)$ use:
 - P(X≥x) = 1 P(X≤x-1) which works when X is a binomial random variable
 P(X≥5)=1-P(X≤4)
- To calculate $P(a \le X \le b)$ use:
 - $P(a \le X \le b) = P(X \le b) P(X \le a 1)$ which works when X is a binomial random variable • $P(5 \le X \le 9) = P(X \le 9) - P(X \le 4)$

What if an inequality does not have the equals sign (strict inequality)?

 For a binomial distribution (as it is discrete) you could rewrite all strict inequalities (< and >) as weak inequalities (≤ and ≥) by using the identities for a binomial distribution

•
$$P(X < x) = P(X \le x - 1)$$
 and $P(X > x) = P(X \ge x + 1)$

- For example: $P(X < 5) = P(X \le 4)$ and $P(X > 5) = P(X \ge 6)$
- It helps to think about the range of integers you want
 Identify the smallest and biggest integers in the range
- If your range has no minimum or maximum then use 0 or n
 - $P(X \le b) = P(0 \le X \le b)$
 - $P(X \ge a) = P(a \le X \le n)$
- $P(a < X \le b) = P(a + 1 \le X \le b)$
 - $P(5 < X \le 9) = P(6 \le X \le 9)$
- $P(a \le X < b) = P(a \le X \le b 1)$
 - $P(5 \le X < 9) = P(5 \le X \le 8)$
- $P(a < X < b) = P(a + 1 \le X \le b 1)$
 - $P(5 < X < 9) = P(6 \le X \le 8)$

Page 10 of 12

- If the question is in context then write down the inequality as well as the final answer
 - This means you still might gain a mark even if you accidentally type the wrong numbers into your GDC

