Head to <u>www.savemyexams.com</u> for more awesome resources

 $\text{IB} \cdot \text{HL} \cdot \text{Chemistry}$

Q 15 questions

Multiple Choice Questions

How Far? The Extent of Chemical Change

The Characteristics of Dynamic Equilibrium / The Equilibrium Law / The Equilibrium Constant / Le Chatelier's Principle / The Reaction Quotient (HL) / Equilibrium Law Problem Solving (HL) / The Equilibrium Constant & Gibbs Energy (HL)

Scan here for your answers

or visit savemyexams.com

Total Marks

/15

Head to <u>www.savemyexams.com</u> for more awesome resources

1 Study the following equilibrium reaction and determine which of the statements must be true.

$$2X \Rightarrow Y \qquad K_c = 1.1$$

- **A.** [X] ≫ [Y]
- **B.** [X] > [Y]
- **C.** [X] = [Y]
- **D.** [X] < [Y]

(1 mark)

2 Hydrogen reacts with iodine according to the following equation

$$H_2(g) + I_2(g) \Rightarrow 2HI(g)$$

The value of K_c for this reaction has been measured at different temperatures

From the information given which of the following must be true?

A. The reaction is exothermic

- **B.** The reaction is endothermic
- **C.** The reaction barely proceeds at 355 °C
- **D.** The reaction almost goes to completion at 450 $^{\circ}$ C

3 The following K_c values were obtained for a reaction carried out at different temperatures, T_1 to T_4 .

Temperature	<i>K</i> _c value
T ₁	1 x 10 ⁻²
T ₂	1 x 10 ¹
T ₃	1
T ₄	1 x 10 ²

Which of the following gives the correct amount of products in the mixtures from least to most?

- **A.** T₁ < T₂ < T₃ < T₄
- **B.** T₄ < T₃ < T₂ < T₁

C. $T_4 < T_2 < T_3 < T_1$

D.
$$T_1 < T_3 < T_2 < T_4$$

(1 mark)

4 Which of the following conditions and reasons will increase the amount of hydrogen iodide produced?

$$H_2(g) + I_2(g) = 2HI(g) \qquad \Delta H = -126 \text{ kJ}$$

Head to www.savemyexams.com for more awesome resources

	Condition	Reason	Condition	Reason
A	increase T	exothermic reaction	increase P	two gaseous reactants but only one gaseous product
В	increase T	endothermic reaction	no change in P	equal numbers of moles of gases
С	decrease T	exothermic reaction	decrease P	two moles of gaseous product but only one mole of each gaseous reactant
D	decrease T	exothermic reaction	no change in P	equal numbers of moles of gases

(1 mark)

5 The blood-red complex iron (III) thiocynanate, [FeSCN]²⁺ is formed when iron (III) ions react with thiocyanate ions in the following equilibrium reaction:

Which of the following changes would make the solution go darker?

- raising the temperature of the solution
- adding iron(III) chloride solution
- adding a catalyst

A. I and II only

B. I and III only

- C. II and III only
- D. I, II and III

(1 mark)

6 Which of the following features is not a characteristic of a state of equilibrium?

- **A.** Equilibrium is dynamic
- **B.** Equilibrium is achieved in a closed system
- **C.** Concentrations of reactants and products are equal
- **D.** Equilibrium can be reached from either direction

(1 mark)

7 What is the relationship between K_{c1} and K_{c2} in the following reactions?

$$2\text{NOBr}(g) = 2\text{NO}(g) + \text{Br}_2(g) K_{c1}$$

NO (g) +
$$\frac{1}{2}$$
Br₂ (g) = NOBr (g) K_{c2}

- **A.** 2*K*_{c2} = *K*_{c1}
- **B.** $(K_{c2})^2 = K_{c1}$
- $\mathbf{C.} \ \mathbf{K}_{c2} = \frac{1}{\sqrt{K_{c1}}}$
- **D.** $K_{c2} = \frac{1}{2K_{c1}}$

(1 mark)

8 Nitrogen dioxide can react with itself to produce a dimer molecule called dinitrogen tetroxide in the following equilibrium reaction.

 $2NO_2(g) = N_2O_4(g)$ $K_c = 0.01 \text{ at } 25 \,^{\circ}C$

In an experiment, 100 cm³ of nitrogen dioxide is placed in a gas syringe and the barrel is pushed in, meaning the volume is reduced to 50 cm³ at constant temperature.

Which of the following statements are true?

I. The value of *K*c increases II. More N₂O₄ is formed III. The ratio of $\frac{[NO_2]}{[N_2O_4]}$ decreases

- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III

(1 mark)

Page 6 of 9

- **9** One of the characteristics of a state of equilibrium, is that equilibria are said to be *dynamic*. What is the meaning of *dynamic* in this context?
 - **A.** The position of equilibrium is constantly changing
 - **B.** The rates of forward and backward reactions change
 - **C.** The reactants and products are continually reacting
 - **D.** The concentrations of the reactants and products continue to change

(1 mark)

10 The reaction shown below has a value of $K_c = 1.0 \times 10^{-4}$ at 25 °C.

$$2\text{NOBr}(g) \approx 2\text{NO}(g) + \text{Br}_2(I)$$

Which of the following relationships is correct about this equilibrium at 25 °C?

- **A.** [NO] » [NOBr]
- **B.** [NOBr] » [Br₂]
- **C.** 2 x [NOBr] = [Br₂]
- **D.** [NO] = [NOBr]

(1 mark)

11 The Haber process is a key step in the manufacture of fertilisers:

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g) \qquad \Delta H = -ve$$

Which is correct about the effect of increasing temperature for this reaction?

Head to www.savemyexams.com for more awesome resources

	Effect on equilibrium position	Effect on K _c
Α.	Shifts left	No change
B.	Shifts right	No change
C.	Shifts right	Increase
D.	Shifts left	Decrease

(1 mark)

- **12** Which equation represents a reaction where the number of moles alone can not be used to calculate the value of K_c ?
 - **A.** CH_3CH_2OH (aq) + CH_3COOH (aq) \rightleftharpoons $CH_3CH_2OCOCH_3$ (aq) + H_2O (l)
 - **B.** $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$
 - **C.** $2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$
 - **D.** $N_2(g) + O_2(g) \rightleftharpoons 2NO(g)$

(1 mark)

13 When 0.20 mol NO, 0.08 mol H_2 and 0.10 mol of H_2O are placed in a 1.0 dm³ flask, the following equilibrium is established:

2NO (g) + 2H₂ (g)
$$\rightleftharpoons$$
 N₂ (g) + 2H₂O (g)

At equilibrium, the concentration of H_2 (g) was found to be 0.02 mol dm⁻³.

What is the correct value of K_c ?

- **A.** 1.02 x 10⁻²
- **B.** 98.0
- **C.** 8.3

D. 489.8

14 Nitrogen dioxide can form a dimer that can also break back down again as part of a reversible reaction:

 $N_2O_4(g) \rightleftharpoons NO_2(g) \qquad \Delta H = +ve$

The reaction reaches an equilibrium at temperature T, where $K_c = 1$

What is true for a higher temperature, T_2 ?

	<i>K</i> c value	Δ <i>G</i> ^θ value
А.	Increases	Increases
В.	Decreases	Increases
С.	Decreases	Decreases
D.	Increases	Decreases

(1 mark)

- **15** Which would be the correct way to plot a graph and then calculate ΔG^{θ} from experimental data of K_c and temperature values?
 - $\Delta G^{\theta} = -RT \ln K$

	y-axis	x-axis	$\Delta G^{\Theta} =$
Α.	1 <i>/ T</i>	ln K	-R x gradient
В.	ln <i>K</i>	1 <i>/ T</i>	-R x gradient
C.	ln <i>K</i>	1 <i>/ T</i>	R / gradient
D.	1 <i>/ T</i>	ln <i>K</i>	R / gradient

(1 mark)

(1 mark)