

IB · **SL** · Chemistry

Structured Questions

The Nuclear Atom

Nuclear Model of the Atom / Subatomic Particles / Isotopes

Total Marks	/59
Hard (3 questions)	/23
Medium (3 questions)	/19
Easy (3 questions)	/1/

Scan here to return to the course or visit savemyexams.com

Easy Questions

1 (a) Deduce the missing information using section 6 of the data booklet, and complete the following table.

Symbol	Protons	Neutrons	Electrons
²³ Na			
³² S ²⁻			
⁸⁶ Sr ²⁺			

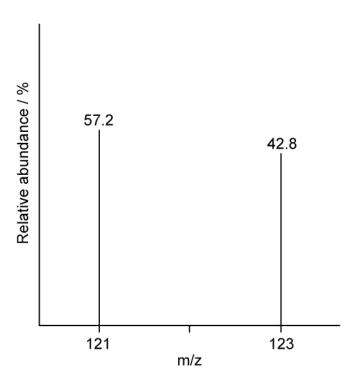
 	(3 marks)

(b) A sample of Rh contains the following isotopes. Calculate the relative atomic mass of Rh in the sample. Give your answer to 2 dp.

Isotope	% Abundance
¹⁰¹ Rh	85
¹⁰² Rh	15

(2 marks)

(c) Deduce the number of protons, neutrons and electrons in an atom of 102 Rh.


(2 marks)

(d)	Give the atomic symbol of an element which has more protons than neutrons. most common isotope.	Use its
		(1 mark

2 (a)	The atomic mass of each element in the periodic table is based on the carbon-12 scale.
	Describe the composition of an atom of carbon-12.
	(1 mark)
(b)	Carbon also exists as the isotope ¹⁴ C. How does the composition of this isotope differ from that of carbon-12.
	(1 mark)
(c)	The relative abundance of isotopes in a sample of carbon is 94% 12 C and 6% 14 C.
	How would this information be obtained.
	(1 mark)
(d)	Calculate the relative atomic mass of the carbon sample in part c)
	(1 mark)

3 (a)	Boron contains two isotopes $^{10}\mathrm{B}$ and $^{11}\mathrm{B}$ with a relative abundance of 20% and 80% respectively.
	State the difference between these isotopes of boron.
	(1 mark)
(b)	A sample of antinomy was analysed in the mass spectrometer and two main isotopes were found, $^{121}\mathrm{Sb}$ and $^{123}\mathrm{Sb}$.
	Calculate the number of protons and neutrons in both isotopes of antimony.
	(3 marks)
(c)	The graph represents the mass spectrum of antimony. Use the information in the image to calculate the relative atomic mass of antimony.

(1 mark)

Medium Questions

1 (a) Using your knowledge of atomic structure, complete the table below for the particles found in an atom.

Particle	Relative charge	Relative mass
Proton		
Neutron		
Electron		

			(3 marks)
			(5 11101113)

(b) The actual mass of protons, neutrons and electrons is given.

	Proton	Neutron	Electron
Mass (kg)	1.672622 x 10 ⁻²⁷	1.674927 x 10 ⁻²⁷	9.109383 x 10 ⁻³¹

	(1 mark)
Calculate the mass, in g, of a nitrogen molecule.	

(c)	Oxygen consists of three stable isotopes, oxygen-16, oxygen-17, and oxygen-18.
	State the particles present in each isotope and outline what differences would be expected in the chemical reactivity of the three isotopes.
	(2 marks)
(-I \	
(a)	Suggest why some elements have several isotopes and others, like fluorine, have only one known isotope (known as monoisotopic elements).
	(1 mark)

2 (a)	Nitrous oxide is used as a sedative in dentistry and has the formula N_2O . Different sources of N_2O contain different ratios of ^{14}N and ^{15}N .
	State the name of the instrument used to distinguish between 14 N and 15 N and outline two characteristic differences seen in the analysis of 14 N and 15 N.
	(2 marks)
(b)	A sample of nitrous oxide was enriched so that it contained 4% by mass of ¹⁵ N. Calculate the relative molecular mass of the resulting nitrous oxide.
	(2 marks)
(c)	An atom has twice as many protons, and twice as many neutrons, as an atom of $^{15}\mathrm{N}$.
	Determine the chemical symbol for this atom, including the mass number, and deduce the number of electrons.
	(2 marks)

chemical properties.	nave identical chemical	p. 5pc. 005, 8dc 71dil	J have amerene
			(3 ma
) Atoms are made up o	f three subatomic part	icles; protons, neutror	ns and electrons.
Dowtiele	Ducton	Neutron	Electron
Particle	Proton	Neutron	Liection
Mass / kg	1.673 x 10 ⁻²⁷	1.675 x 10 ⁻²⁷	9.000 x 10 ⁻³¹
Mass / kg	1.673 x 10 ⁻²⁷	1.675 x 10 ⁻²⁷	
Mass / kg	1.673 x 10 ⁻²⁷	1.675 x 10 ⁻²⁷	
Mass / kg	1.673 x 10 ⁻²⁷	1.675 x 10 ⁻²⁷	9.000 x 10 ⁻³¹
Mass / kg Calculate the mass of	1.673 x 10 ⁻²⁷	1.675 x 10 ⁻²⁷	9.000 x 10 ⁻³¹
Mass / kg Calculate the mass of	1.673 x 10 ⁻²⁷ one atom of carbon in	1.675 x 10 ⁻²⁷	9.000 x 10 ⁻³¹ (2 ma
Mass / kg Calculate the mass of	1.673 x 10 ⁻²⁷ one atom of carbon in	1.675 x 10 ⁻²⁷	9.000 x 10 ⁻³¹

Hard Questions

1 (a)	Give	e the full electron configuration of the following atoms and ions.	
	i)	Zinc (II) ion, Zn ²⁺	
			[1]
	ii)	Copper (II) ion, Cu ²⁺	
			[1]
		(2 n	narks
(b)	mas	orine has two naturally occurring isotopes, ³⁵ Cl with a mass of 34.969 and ³⁷ Cl viss of 36.966. The relative atomic mass of Cl is 35.5. Calculate the percentage indance of each isotope.	
(c)		(3 n dict whether the atomic radius of ³⁵ Cl or ³⁷ Cl would be the greater and give a re your answer.	n arks eason
		(2 n	narks
(d)		ample of cerium, Ce, was analysed in a mass spectrometer. The relative abunda hree of the four main isotopes that were identified are shown in the table below	

A sample of cerium, Ce, has four isotopes that have a known relative abundance. This sample has an A_r of 140.12.

Isotope	¹³⁶ Ce	¹³⁸ Ce	¹⁴⁰ Ce	^m Ce
Abundance (%)	0.19	0.25	88.45	To be calculated

Use the data from the table to calculate m, the mass number and the percentage abundance of isotope ^m Ce.	;
(4	marks)

2 (a) A sample of element Z was extracted from a meteorite. The table shows the relative abundance of each isotope in a mass spectrum of this sample of Z. Calculate the relative atomic mass of Z and suggest an identity of Z. Give your answer to 1 d.p.

m/z value	64	66	67	68
Relative abundance (%)	38.9	27.8	14.7	18.6

	(3 marks)
(b)	A naturally occurring sample of the element boron, B, has two isotopes of mass 10 and 11, and a relative atomic mass of 10.8.
	Calculate the relative abundances of both isotopes in the sample of boron, B.
	(3 marks)
(c)	Give the full electron configuration of the Cu ⁺ ion.
	(1 mark)

(d) Calculate the percentage abundance of ⁶³Cu with a mass of 62.9296 and ⁶⁵Cu with a mass of 64.9278, when the average mass of the Cu isotope is 63.546. Give your answer to an appropriate number of significant figures.

(3 mai	rks)
Outline why the chlorine atom has a smaller atomic radius than the sulfur atom.	
(2 ma	_
	Outline why the chlorine atom has a smaller atomic radius than the sulfur atom.