

3.11 Vector Planes

Contents

- $★$ 3.11.1 Vector Equations of Planes
- $*$ 3.11.2 Intersections of Lines & Planes
- ***** 3.11.3 Angles Between Lines & Planes
- $★$ 3.11.4 Shortest Distances with Planes

3.11.1 Vector Equations of Planes

Equation of a Plane in Vector Form

How do I find the vector equation of a plane?

- A plane is a flat surface which is two-dimensional
	- \blacksquare Imagine a flat piece of paper that continues on forever in both directions
- A plane in often denoted using the capital Greek letter *Π*
- The vector form of the equation of a plane can be found using two direction vectors on the plane
	- The direction vectors must be
		- **parallel** to the plane
		- not parallel to each other
	- **If both** direction vectors lie on the plane then they will intersect at a point
- The formula for finding the vector equation of a plane is
	- $\mathbf{r} = \mathbf{a} + \lambda \mathbf{b} + \mu \mathbf{c}$
		- Where r is the position vector of any point on the plane
		- **a** is the **position vector** of a known point on the plane
		- **b** and c are two non-parallel direction (displacement) vectors parallel to the plane
		- \blacksquare λ and \upmu are scalars
	- The formula is given in the formula booklet but you must make sure you know what each part means
- \blacksquare As a could be the position vector of any point on the plane and b and c could be any non-parallel direction vectors on the plane there are infinite vector equations for a single plane

How do I determine whether a point lies on a plane?

• Given the equation of a plane
$$
\mathbf{r} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} + \lambda \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} + \mu \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix}
$$
 then the point r with position

vector
$$
\begin{pmatrix} x \\ y \\ z \end{pmatrix}
$$
 is on the plane if there exists a value of λ and μ such that
\n
$$
\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} + \lambda \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} + \mu \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix}
$$

This means that there exists a single value of λ and μ that satisfy the three **parametric** equations:

$$
x = a_1 + \lambda b_1 + \mu c_1
$$

$$
y = a_2 + \lambda b_2 + \mu c_2
$$

Page 2 of 27

 $z = a_3 + \lambda b_3 + \mu c_3$

- Solve two of the equations first to find the values of λ and μ that satisfy the first two equation and then check that this value also satisfies the third equation
- If the values of λ and μ do not satisfy all three equations, then the point r does not lie on the plane

Q Examiner Tip

- The formula for the vector equation of a plane is given in the formula booklet, make sure you know what each part means
- Be careful to use different letters, e.g. λ and μ as the scalar multiples of the two direction vectors

Worked example

The points A, B and C have position vectors $\bm{a} = 3\bm{i} + 2\bm{j} - \bm{k}$, $\bm{b} = \bm{i} - 2\bm{j} + 4\bm{k}$, and $c = 4i - j + 3k$ respectively, relative to the origin O.

(a) Find the vector equation of the plane.

Start by finding the direction vectors
$$
\overrightarrow{AB}
$$
 and \overrightarrow{AC}
\n $\overrightarrow{AB} = \underline{b} - \underline{a} = \begin{pmatrix} 1 \\ -2 \\ 4 \end{pmatrix} - \begin{pmatrix} 3 \\ 2 \\ -1 \end{pmatrix} = \begin{pmatrix} -2 \\ -4 \\ 5 \end{pmatrix}$
\n $\overrightarrow{AC} = \underline{c} - \underline{a} = \begin{pmatrix} 4 \\ -1 \\ 3 \end{pmatrix} - \begin{pmatrix} 3 \\ -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ -3 \\ 4 \end{pmatrix}$
\nAll three points lie on the plane, so choose the position vector of one point, e.g. \overrightarrow{OR} , to use as 'a' in the vector equation of a plane formula.
\nCheck that \overrightarrow{AB} and \overrightarrow{AC} are not parallel.
\n $\Gamma = \underline{a} + \lambda \overrightarrow{AB} + \mu \overrightarrow{AC}$
\n $\Gamma = \begin{pmatrix} 3 \\ -1 \end{pmatrix} + \lambda \begin{pmatrix} -2 \\ -4 \end{pmatrix} + \mu \begin{pmatrix} 1 \\ -3 \\ 4 \end{pmatrix}$ (This is one of many) correct answers

(b) Determine whether the point D with coordinates (-2, -3, 5) lies on the plane.

SaveMyExams

Head to [www.savemyexams.com](https://www.savemyexams.com/?utm_source=pdf) for more awesome resources

Your notes

Page 5 of 27 © 2015-2024 [Save My Exams, Ltd.](https://www.savemyexams.com/) · Revision Notes, Topic Questions, Past Papers

Equation of a Plane in Cartesian Form

How do I find the vector equation of a plane in cartesian form?

- The cartesian equation of a plane is given in the form
	- $ax + by + cz = d$
	- **This is given in the formula booklet**
- A normal vector to the plane can be used along with a known point on the plane to find the cartesian equation of the plane
	- The normal vector will be a vector that is **perpendicular** to the plane
- The scalar product of the normal vector and any direction vector on the plane will the zero
	- **F** The two vectors will be perpendicular to each other
	- The direction vector from a fixed-point A to any point on the plane, R can be written as $r a$
	- **Fig. 1.** Then $\mathbf{n} \cdot (\mathbf{r} \mathbf{a}) = 0$ and it follows that $(\mathbf{n} \cdot \mathbf{r}) (\mathbf{n} \cdot \mathbf{a}) = 0$
- This gives the equation of a plane using the normal vector:
	- $n \cdot r = a \cdot n$
		- Where r is the position vector of any point on the plane
		- \blacksquare a is the **position vector** of a known point on the plane
		- \blacksquare n is a vector that is **normal** to the plane
	- **This is given in the formula booklet**

If the vector r is given in the form $\begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix}$ ⎝ ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ \boldsymbol{X} y z and a and n are both known vectors given in the form $\begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}$ ⎝

and $\begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix}$ ⎝ ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ a b c then the Cartesian equation of the plane can be found using:

- $\mathbf{n} \cdot \mathbf{r} = ax + by + cz$
- $\mathbf{a} \cdot \mathbf{n} = a_1 a + a_2 b + a_3 c$
- Therefore $ax + by + cz = a_1a + a_2b + a_3c$
- This simplifies to the form $ax + by + cz = d$

How do I find the equation of a plane in Cartesian form given the vector form?

- The Cartesian equation of a plane can be found if you know
	- the normal vector and
	- a point on the plane
- The vector equation of a plane can be used to find the normal vector by finding the vector product of the two direction vectors
	- A vector product is always perpendicular to the two vectors from which it was calculated
- The vector a given in the vector equation of a plane is a known point on the plane

Page 6 of 27

 $\begin{array}{c} \hline \end{array}$

 a_{1}

 a_{2}

 a_{3}

⎠

- \blacksquare Once you have found the normal vector then the point **a** can be used in the formula $\mathbf{n} \cdot \mathbf{r} = \mathbf{a} \cdot \mathbf{n}$ to find the equation in Cartesian form
- To find $ax + by + cz = d$ given $\mathbf{r} = \mathbf{a} + \lambda \mathbf{b} + \mu \mathbf{c}$:

Let
$$
\mathbf{n} = \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \mathbf{b} \times \mathbf{c}
$$
 then $d = \mathbf{n} \cdot \mathbf{a}$

Q Examiner Tip

In an exam, using whichever form of the equation of the plane to write down a normal vector to the plane is always a good starting point

3.11.2 Intersections of Lines & Planes

Intersection of Line & Plane

How do I tell if a line is parallel to a plane?

- A line is parallel to a plane if its direction vector is perpendicular to the plane's normal vector
- \blacksquare If you know the Cartesian equation of the plane in the form $ax + by + cz = d$ then the values of a, b, and c are the individual components of a normal vector to the plane
- The scalar product can be used to check in the direction vector and the normal vector are perpendicular
	- If two vectors are perpendicular their scalar product will be zero

How do I tell if the line lies inside the plane?

- If the line is parallel to the plane then it will either never intersect or it will lie inside the plane
	- Check to see if they have a common point
- If a line is parallel to a plane and they share any point, then the line lies inside the plane

How do I find the point of intersection of a line and a plane?

- \blacksquare If a line is **not parallel** to a plane it will **intersect** it at a single point
- If both the vector equation of the line and the Cartesian equation of the plane is known then this can be found by:
- STEP 1: Set the position vector of the point you are looking for to have the individual components x, y , and z and substitute into the vector equation of the line

$$
\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x_0 \\ y_0 \\ z_0 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ m \\ n \end{pmatrix}
$$

- STEP 2: Find the parametric equations in terms of x , y , and z
	- $x = x_0 + \lambda l$
	- $y = y_0 + \lambda m$
	- $z = z_0 + \lambda n$
- STEP 3: Substitute these parametric equations into the Cartesian equation of the plane and solve to find λ
	- $a(x_0 + \lambda I) + b(y_0 + \lambda m) + c(z_0 + \lambda n) = d$
- STEP 4: Substitute this value of λ back into the vector equation of the line and use it to find the position vector of the point of intersection

Page 9 of 27

STEP 5: Check this value in the Cartesian equation of the plane to make sure you have the correct answer

Worked example

Find the point of intersection of the line
$$
r = \begin{pmatrix} 1 \\ -3 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ -1 \\ -1 \end{pmatrix}
$$
 with the plane $3x - 4y + z = 8$.

Find the parametric form of the equation of the line: Let $r = \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ -3 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ -1 \\ -1 \end{pmatrix}$ then $\begin{cases} x = 1 + 2\lambda \\ y = -3 - \lambda \\ z = 2 - \lambda \end{cases}$ Substitute into the equation of the plane: $3(1 + 2\lambda) - 4(-3 - \lambda) + (2 - \lambda) = 8$ Solve to find λ : $3 + b\lambda + 12 + 4\lambda + 2 - \lambda = 8$ $\lambda = -1$ Substitute $\lambda = -1$ into the vector equation of the line: $Y = \begin{pmatrix} 1 \\ -3 \\ 2 \end{pmatrix} + (-1) \begin{pmatrix} 2 \\ -1 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 & -2 \\ -3 & +1 \\ 2 & +1 \end{pmatrix} = \begin{pmatrix} -1 \\ -2 \\ 3 \end{pmatrix}$ $(-1, -2, 3)$

Intersection of Planes

How do we find the line of intersection of two planes?

- **Two planes will either be parallel or they will intersect along a line**
	- **Consider the point where a wall meets a floor or a ceiling**
	- You will need to find the equation of the line of intersection
- If you have the Cartesian forms of the two planes then the equation of the line of intersection can be found by solving the two equations simultaneously
	- As the solution is a vector equation of a line rather than a unique point you will see below how the equation of the line can be found by part solving the equations
	- **For example:**
		- $2x y + 3z = 7$ (1)

$$
x - 3y + 4z = 11 \tag{2}
$$

- STEP 1: Choose one variable and substitute this variable for λ in both equations
	- For example, letting $x = \lambda$ gives:
		- \therefore 2 $\lambda y + 3z = 7$ (1)
		- $\lambda 3y + 4z = 11$ (2)
- STEP 2: Rearrange the two equations to bring λ to one side
	- Equations (1) and (2) become
		- $y 3z = 2\lambda 7$ (1)
		- \bullet 3y 4z = λ 11 (2)
- STEP 3: Solve the equations simultaneously to find the two variables in terms of λ
	- $\overline{3(1)} (2)$ Gives
		- $z = 2 \lambda$
	- Substituting this into (1) gives

$$
y = -1 - \lambda
$$

STEP 4: Write the three parametric equations for x, y, and z in terms of λ and convert into the vector

equation of a line in the form
$$
\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x_0 \\ y_0 \\ z_0 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ m \\ n \end{pmatrix}
$$

• The parametric equations

$$
x = \lambda
$$

$$
y = -1 - \lambda
$$

$$
z=2-\lambda
$$

Become

$$
\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ -1 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix}
$$

$$
\bigotimes_{\text{Your notes}}
$$

Page 11 of 27

- If you have fractions in your direction vector you can change its magnitude by multiplying each one by their common denominator
	- The magnitude of the direction vector can be changed without changing the equation of a line
- \blacksquare An alternative method is to find two points on both planes by setting either x, y, or z to zero and solving the system of equations using your GDC or row reduction
	- **Repeat this twice to get two points on both planes**
	- These two points can then be used to find the vector equation of the line between them
	- \blacksquare This will be the line of intersection of the planes
	- This method relies on the line of intersection having points where the chosen variables are equal to zero

How do we find the relationship between three planes?

- Three planes could either be parallel, intersect at one point, or intersect along a line
- If the three planes have a unique point of intersection this point can be found by using your GDC (or row reduction) to solve the three equations in their Cartesian form
	- Make sure you know how to use your GDC to solve a system of linear equations
	- **Enter all three equations in for the three variables x, y, and z**
	- Your GDC will give you the unique solution which will be the coordinates of the point of intersection
- If the three planes do not intersect at a unique point you will not be able to use your GDC to solve the equations
	- If there are no solutions to the system of Cartesian equations then there is no unique point of intersection
- If the three planes are all parallel their normal vectors will be parallel to each other
	- Show that the normal vectors all have equivalent direction vectors
	- These direction vectors may be scalar multiples of each other
- If the three planes have no point of intersection and are not all parallel they may have a relationship such as:
	- Each plane intersects two other planes such that they form a $\frac{\text{prism}}{\text{nom}}$ (none are parallel)
	- Two planes are parallel with the third plane intersecting each of them
	- Check the normal vectors to see if any two of the planes are parallel to decide which relationship they have
- If the three planes intersect along a line there will not be a unique solution to the three equations but there will be a **vector equation of a line** that will satisfy the three equations
- The system of equations will need to be solved by elimination or row reduction
	- \blacksquare Choose one variable to substitute for λ
	- Solve two of the equations simultaneously to find the other two variables in terms of λ
	- Write x, y, and z in terms of λ in the parametric form of the equation of the line and convert into the vector form of the equation of a line

Page 12 of 27

Page 13 of 27

Worked example

Two planes $\varPi_1^{}$ and $\varPi_2^{}$ are defined by the equations:

$$
\Pi_1: 3x+4y+2z=7
$$

 Π_2 : $x - 2y + 3z = 5$

Find the vector equation of the line of intersection of the two planes.

STEP 1: Let
$$
z = \lambda
$$
, then $3x + 4y + 2\lambda = 7$

\nYou can substitute any variable $x - 2y + 3\lambda = 5$ as $x - 2y + 3\lambda = 5$

\nSee which is easiest.

\nSTEP 2: $0: 3x + 4y = 7 - 2\lambda$ Write the two equations as simultaneous equations for $0: x - 2y = 5 - 3\lambda$ the two remaining constants.

\nSTEP 3: Find x and y in terms of λ :

\n $0 - 2(2): (3x + 4y - 7 - 2\lambda)$

\n $1.2x - 4y = 10 - 6\lambda$

\n $1.2x - 4y = 10 - 6\lambda$

\n $x = \frac{17}{5} - \frac{8\lambda}{5}$

\nSub into $2\left(\frac{17}{5} - \frac{8\lambda}{5} - 2y + 3\lambda = 5\right)$

\n $y = \frac{7\lambda}{10} - \frac{8}{10}$

\nSTEP 4: $x = \frac{17}{5} - \frac{8\lambda}{5}$

\n $y = \frac{7\lambda}{10} - \frac{4}{5}$

\n $y = \frac{7\lambda}{10} - \frac{4}{5}$

\n $z = \lambda$

\nThe components of the direction vector can be multiplied by a scalar without changing the direction.

\n $\Gamma = \begin{pmatrix} \frac{17}{5} & 4 \\ 4 & 5 \\ 0 & 0 \end{pmatrix} + \lambda \begin{pmatrix} 16 \\ 7 \\ 10 \end{pmatrix}$

Page 14 of 27

3.11.3 Angles Between Lines & Planes

Angle Between Line & Plane

What is meant by the angle between a line and a plane?

- When you find the angle between a line and a plane you will be finding the angle between the line itself and the line on the plane that creates the smallest angle with it
	- This means the line on the plane directly under the line as it joins the plane
- It is easiest to think of these two lines making a right-triangle with the normal vector to the plane
	- The line joining the plane will be the hypotenuse
	- The line on the plane will be adjacent to the angle
	- The normal will the **opposite** the angle

How do I find the angle between a line and a plane?

- **You need to know:**
	- \blacksquare A direction vector for the line (b)
		- $\bullet \quad$ This can easily be identified if the equation of the line is in the form $\textbf{\textit{r}} = \textbf{\textit{a}} + \lambda \textbf{\textit{b}}$
	- \blacksquare A normal vector to the plane (n)
		- \blacksquare This can easily be identified if the equation of the plane is in the form $\boldsymbol{I}^{\cdot}\colon$ $\boldsymbol{I\!\!I} = \boldsymbol{a}\cdot\boldsymbol{I\!\!I}$
- Find the acute angle between the direction of the line and the normal to the plane
	- Use the formula $cos\alpha =$ $|b \cdot n|$
		- $|b| |n|$
	- The absolute value of the scalar product ensures that the angle is acute
- **Subtract** this angle from 90° to find the acute angle between the line and the plane
	- Subtract the angle from $\frac{\pi}{2}$ $\overline{2}^{\,}$ if working in **radians**

Your notes

Q Examiner Tip

- Remember that if the scalar product is negative your answer will result in an obtuse angle
	- \blacksquare Taking the absolute value of the scalar product will ensure that you get the acute angle as your answer

Angle Between Two Planes

How do I find the angle between two planes?

- The angle between two planes is equal to the angle between their normal vectors
	- It can be found using the scalar product of their normal vectors

$$
\cos \theta = \frac{\mathbf{n}_1 \cdot \mathbf{n}_2}{\left|\mathbf{n}_1\right| \left|\mathbf{n}_2\right|}
$$

í.

- If two planes Π_1 and Π_2 with normal vectors n_1 and n_2 meet at an angle then the two planes and the two normal vectors will form a quadrilateral
	- \blacksquare The angles between the planes and the normal will both be 90 $^\circ$
	- The angle between the two planes and the angle opposite it (between the two normal vectors) will add up to 180°

Page 18 of 27

SaveMyExams

Q Examiner Tip

- In your exam read the question carefully to see if you need to find the acute or obtuse angle
	- When revising, get into the practice of double checking at the end of a question whether your angle is acute or obtuse and whether this fits the question

Worked example

Find the acute angle between the two planes which can be defined by equations Π_1 : $2x - y + 3z = 7$ and Π_2 : $x + 2y - z = 20$.

3.11.4 Shortest Distances with Planes

Shortest Distance Between a Line and a Plane

How do I find the shortest distance between a point and a plane?

- The shortest distance from any point to a plane will always be the **perpendicular** distance from the point to the plane
- Given a point, P with position vector **p** and a plane Π with equation $\mathbf{r}\cdot\mathbf{n}=d$
	- STEP 1: Find the vector equation of the line perpendicular to the plane that goes through the point, P
		- \blacksquare This will have the position vector of the point, P, and the direction vector **n**
		- $\mathbf{r} = \mathbf{p} + \lambda \mathbf{n}$
		- STEP 2: Find the value of λ at the **point of intersection** of this line with Π by substituting the equation of the line into the equation of the plane
		- STEP 3: Find the **distance** between the point and the point of intersection
			- Substitute λ into the equation of the line to find the coordinates of the point on the plane closest to point P
			- Find the distance between this point and point P
			- As a shortcut, this distance will be equal to $|\lambda \mathbf{n}|$

How do I find the shortest distance between a given point on a line and a plane?

- The shortest distance from any point on a line to a plane will always be the **perpendicular** distance from the point to the plane
- You can follow the same steps above
- A question may provide the acute angle between the line and the plane
	- Use right-angled trigonometry to find the perpendicular distance between the point on the line and the plane
		- **Drawing a clear diagram will help**

Page 20 of 27

P JT **SHORTEST DISTANCE** θ **INTERSECTION** OF JT AND L Convright © Save My Fx

Your notes

How do I find the shortest distance between a plane and a line parallel to the plane?

- The shortest distance between a line and a plane that are parallel to each other will be the perpendicular distance from the line to the plane
- Given a line I_1 with equation ${\bf r}={\bf a}+\lambda{\bf b}$ and a plane Π parallel to I_1 with equation ${\bf r}\cdot{\bf n}=d$
	- Where **n** is the **normal vector** to the plane
	- STEP 1: Find the equation of the line $I^{}_{2}$ perpendicular to $I^{}_{1}$ and Π going through the point ${\sf a}$ in the

form $\mathbf{r} = \mathbf{a} + \mu \mathbf{n}$

- STEP 2: Find the point of intersection of the line $l_2^{}$ and Π
- **STEP 3: Find the distance between the point of intersection and the point,**

Your notes

Q Examiner Tip

Vector planes questions can be tricky to visualise, read the question carefully and sketch a very simple diagram to help you get started

The point $P(-2, 11, -15)$ lies on the line L .

Find the shortest distance between the point P and the plane Π .

SaveMyExams

Head to [www.savemyexams.com](https://www.savemyexams.com/?utm_source=pdf) for more awesome resources

Your notes

STEP 1: Use the given point, P and the known normal to the plane, \underline{n} to write an equation for the line perpendicular to π , ξ .

$$
r = \begin{pmatrix} -2 \\ 11 \\ -15 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}
$$

STEP 2: Find the point of intersection, Q_i , of the new line, λz , with \overline{H} .

$$
\begin{pmatrix} -2 \ \begin{pmatrix} -2 \ \end{pmatrix} + \lambda \begin{pmatrix} 2 \ -1 \ \end{pmatrix} \cdot \begin{pmatrix} 2 \ -1 \ \end{pmatrix} = 6
$$

2(-2+2\lambda) - (11 - \lambda) + (\lambda - 15) = 6
-4 + 4\lambda - 11 + \lambda + \lambda - 15 = 6
6\lambda - 30 = 6
\lambda = 6 \Rightarrow 0\overrightarrow{0} = \begin{pmatrix} -2 \ \begin{pmatrix} 1 \ \end{pmatrix} + \frac{6}{1} \begin{pmatrix} 2 \ -1 \ \end{pmatrix} = \begin{pmatrix} 10 \ \frac{5}{11} \end{pmatrix}

STEP 3: Find the distance between P and Q.

$$
|\overrightarrow{PQ}| = \sqrt{(10-2)^2 + (5-11)^2 + (-9-15)^2} = 6\sqrt{6}
$$
 units

Shortest distance = $6\sqrt{6}$ units

Shortest Distance Between Two Planes

How do I find the shortest distance between two parallel planes?

- **Two parallel** planes will never intersect
- The shortest distance between two parallel planes will be the perpendicular distance between them
- Given a plane \varPi_1 with equation $\mathbf{r}\cdot\mathbf{n}=d$ and a plane \varPi_2 with equation $\mathbf{r}=\mathbf{a}+\lambda \mathbf{b}+~\mu \mathbf{c}$ then the
	- shortest distance between them can be found
	- STEP 1: The equation of the line perpendicular to both planes and through the point \boldsymbol{a} can be written in the form $r = a + sn$
	- STEP 2: Substitute the equation of the line into $\mathbf{r}\cdot\mathbf{n}=d$ to find the coordinates of the point where the line meets $\Pi_{\scriptscriptstyle 1}$
	- \blacksquare STEP 3: Find the distance between the two points of intersection of the line with the two planes

How do I find the shortest distance from a given point on a plane to another plane?

- The shortest distance from any point, P on a plane, \varPi_1 , to another plane, \varPi_2 will be the **perpendicular** distance from the point to $\varPi_{\bm{\gamma}}$
	- STEP 1: Use the given coordinates of the point P on $\varPi_1^{}$ and the normal to the plane $\varPi_2^{}$ to find the vector equation of the line through P that is perpendicular to \varPi_1
	- $\; \overline{\; } \;$ STEP 2: Find the point of intersection of this line with the plane \varPi_{γ}
	- **STEP 3: Find the distance between the two points of intersection**

Q Examiner Tip

There are a lot of steps when answering these questions so set your methods out clearly in the exam

Worked example

Consider the parallel planes defined by the equations:

$$
\Pi_1: \mathbf{r} \cdot \begin{pmatrix} 3 \\ -5 \\ 2 \end{pmatrix} = 44,
$$

$$
\Pi_2: \mathbf{r} = \begin{pmatrix} 0 \\ 0 \\ 3 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ 0 \\ -3 \end{pmatrix} + \mu \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}.
$$

Find the shortest distance between the two planes $\varPi_1^{}$ and $\varPi_2^{}$.

find the equation of the line perpendicular to the planes through the point $(0,0,3)$

$$
L: r = \begin{pmatrix} 0 \\ 0 \\ 3 \end{pmatrix} + S \begin{pmatrix} 3 \\ -5 \\ 2 \end{pmatrix}
$$
 Normal vector
position vector
of π ₂

Substitute the equation of L into the equation of π_i .

$$
\begin{pmatrix} 3s \\ -5s \\ 3+2s \end{pmatrix} \cdot \begin{pmatrix} 3 \\ -5 \\ 2 \end{pmatrix} = 44
$$

3(3s) - 5(-5s) + 2(3+2s) = 44
38s + 6 = 44

$$
s = 1
$$

Substitute $s = 1$ back into the equation of L

$$
\Gamma = \begin{pmatrix} 0 \\ 0 \\ 3 \end{pmatrix} + \begin{pmatrix} 3 \\ -5 \\ 2 \end{pmatrix} = \begin{pmatrix} 3 \\ -5 \\ 5 \end{pmatrix}
$$

Find the distance between $(0,0,3)$ and $(3,-5,5)$

$$
d = \sqrt{3^2 + (-5)^2 + (5-3)^2}
$$

= $\sqrt{38}$

Shortest distance = $\sqrt{38}$ units

Your notes