

**IB** · **DP** · **Maths** 

2 hours 2 12 questions

## **Practice Paper 2**

Scan here to return to the course

or visit savemyexams.com





**Total Marks** 

/110

**1 (a)** The following table shows the mean height, y cm, of primary school children who are age *x* years old.

| Age , <i>X</i><br>years     | 6.25 | 7.35 | 8.5 | 9.25 | 10.75 |
|-----------------------------|------|------|-----|------|-------|
| Mean<br>Height, <i>y</i> cm | 115  | 121  | 129 | 136  | 140   |

The relationship between x and y can be modelled by the regression line of y on x with equation y = ax + b.

- Find the value of a and the value of b. i)
- ii) Write down the value of Pearson's product-moment correlation coefficient, r.

(4 marks)

(b) Use your regression equation from part (a) (i) to estimate the height of a child aged 9 years old.

(2 marks)

(c) Explain why it is not appropriate to use the regression equation to estimate the age of a child who is 133 cm tall.

(1 mark)

**2 (a)** An arithmetic sequence with a common difference -3.5 has first term 77.

Given that the rth term of the sequence is zero, find the value of r.

(2 marks)

**(b)** Find the maximum value of the sum of the first n terms of the sequence.

(3 marks)

**3** A and B are independent events, such that P(A) = 0.25 and P(B) = 0.52. C is another event, such that B and C are mutually exclusive and  $P(A \cap C) = 0.09$ .

Given that  $P(A \cup B \cup C) = 0.95$ , find

- $P(A \cap B)$
- ii) P(C)
- iii)  $P(A' \cap B')$
- iv) P(A | C')

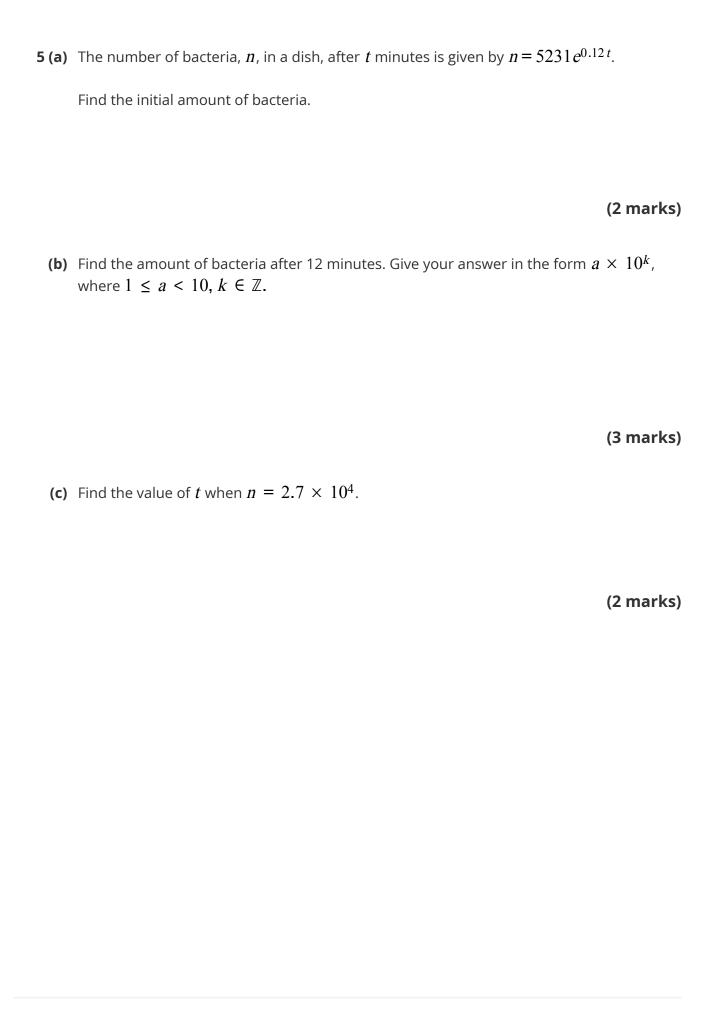
(9 marks)



4 (a) Let  $f(x) = \frac{5-x^2}{3}$  and  $g(x) = 4 - \frac{3}{x}$ , where each function has the largest possible valid domain.

Write down the range of f.

(1 mark)


**(b)** Write down the domain and range of g.

(2 marks)

- (c) Find

  - i)  $(f \circ g)(x)$ ii)  $(g \circ f)(x)$ .

(3 marks)



**6 (a)** A UK energy company charges £0.22 per kilowatt hour (kWh) of electricity used. The amount of energy used per day by the company's customers, X kWh, follows the following probability density function

$$f(x) = \begin{cases} \frac{x(k-x)}{972}, & 0 \le x \le 18\\ 0, & \text{otherwise} \end{cases}$$

Show that k = 18.

(2 marks)

- (b) A customer's total daily charge consists of a fixed (standing) charge of £0.38 per day plus the charge for the electricity used.
  - (i) Find the expected total daily charge.
  - Find the standard deviation for the total daily charge. (ii)

(6 marks)

**7** Consider the nine letters in the word MAGNITUDE.

Find the number of ways that the nine letters may be arranged if

- (i) there are no restrictions
- (ii) the four vowels (A, I, U, E) must all be together
- (iii) the arrangement starts with the letter M and ends with the letter E.

(5 marks)

**8** Consider  $z = \operatorname{cis} \theta$  where  $z \in \mathbb{C}$ ,  $z \neq 1$ .

Show that 
$$\operatorname{Re}\left(\frac{1+z}{1-z}\right) = 0$$
.

(5 marks)

**9 (a)** The binomial series expansion for  $(1+t)^{-1}$  is given by

$$(1+t)^{-1} = 1 - t + t^2 - \dots$$

Using the above result and the Maclaurin series for  $\cos(2x)$ , show that the Maclaurin series for sec(2x) is

$$1 + 2x^2 + \frac{10}{3}x^4 + \dots$$

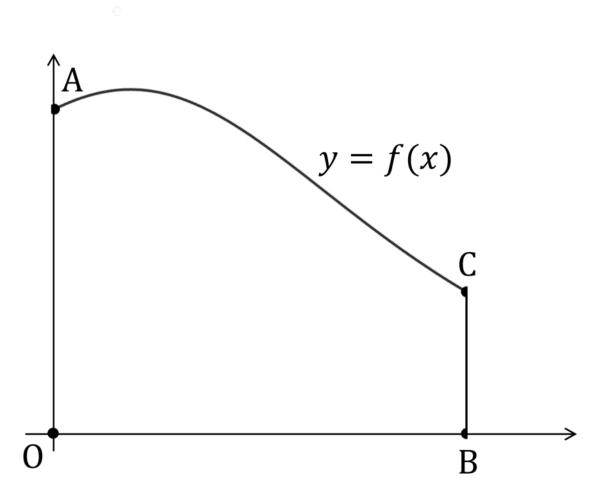
(5 marks)

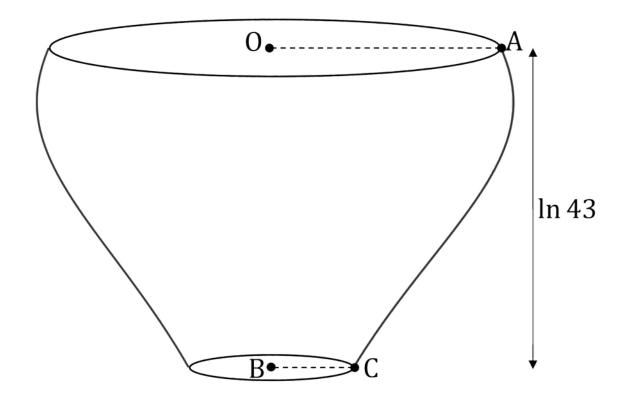
(b) By using the result from part (a) and the Maclaurin series for  $\ln(1+x)$ , find the value of the limit

$$\lim_{x \to 0} \left( \frac{x \ln(1+3x)}{\sec(2x) - 1} \right)$$

(3 marks)

| 10 (a) | The Strike A Light! matchstick company produces matchsticks with a length, $X$ mm, that is normally distributed with mean 45 and variance $\sigma^2$ .                                                                                    |  |  |  |  |  |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|        | The probability that $X$ is greater than 45.37 is 0.1714.                                                                                                                                                                                 |  |  |  |  |  |
|        | Find $P(44.63 < X < 45.37)$ .                                                                                                                                                                                                             |  |  |  |  |  |
| (b)    | (2 marks)  i) Find $\sigma$ , the standard deviation of $X$ .  ii) Hence, find the probability that a randomly selected matchstick has a length less than 44.5 mm.                                                                        |  |  |  |  |  |
|        | (5 marks)                                                                                                                                                                                                                                 |  |  |  |  |  |
|        | (5 marks)                                                                                                                                                                                                                                 |  |  |  |  |  |
| (c)    | Andrew has a box of Strike A Light! matches with fifteen matchsticks remaining in it. Those matchsticks may be assumed to be a random sample. Let $Y$ represent the number of matchsticks in Andrew's box with lengths less than 44.5 mm. |  |  |  |  |  |
|        | Find $E(Y)$ .                                                                                                                                                                                                                             |  |  |  |  |  |
|        | (3 marks)                                                                                                                                                                                                                                 |  |  |  |  |  |


| (d) | Find the probability that exactly one of the matchsticks in Andrew's box has a length less than 44.5 mm. |
|-----|----------------------------------------------------------------------------------------------------------|
|     | (2 marks)                                                                                                |
| (e) | A Strike A Light! matchstick is selected at random and is found to have a length greater than 44.5 mm.   |
|     | Find the probability that the length of the matchstick is between 44.63 mm and 45.37 mm.                 |
|     |                                                                                                          |
|     | (3 marks)                                                                                                |
|     |                                                                                                          |
|     |                                                                                                          |
|     |                                                                                                          |
|     |                                                                                                          |
|     |                                                                                                          |
|     |                                                                                                          |
|     |                                                                                                          |


11 (a) Paola is modelling a small vase from her house for her maths project. To model the edge of the vase in cross-section, she decides to use a function f of the form

$$f(x) = \frac{q e^{\frac{x}{2}}}{2 + e^x}$$

where  $x \in \mathbb{R}$ ,  $x \ge 0$  and  $q \in \mathbb{R}^+$ .

The function and the vase are represented in the diagrams below.





The vertical height of the vase, OB, is measured along the x-axis. The radius of the vase's opening is OA, and its base radius is BC.

To model the vase, she will rotate by  $2\pi$  radians about the x-axis the region enclosed by the graph of y = f(x), the *x*-axis, the *y*-axis, and the line  $x = \ln 43$ .

Show that the volume of the solid of revolution thus formed is  $\frac{14q^2\pi}{45}$  units<sup>3</sup>.

| (6 | ma | rks |
|----|----|-----|
|----|----|-----|

**(b)** The volume of the actual vase is  $100 \text{ cm}^3$ .

Use this information to find the value of q.

(2 marks)

- (c) Find the cross-sectional radius of the vase
  - (i) at its base,
  - (ii) at its widest point.

(4 marks)

(d) Paola wants to investigate how the cross-sectional radius of the vase changes.

Sketch a graph of the derivative of f, and use it to find the value of x at which the crosssectional radius of the vase is decreasing most rapidly.

(4 marks)

**12 (a)** A function g is defined by  $g(x) = \arccos\left(\frac{x^2 - 1}{x^2 + 1}\right)$ ,  $x \in \mathbb{R}$ .

Show that g is an even function.

(1 mark)

**(b)** By considering the limit of g as x tends to infinity, show that the graph of y = g(x) has a horizontal asymptote and state its equation.

(2 marks)

(c) Show that 
$$g'(x) = \frac{-2x}{\left(\sqrt{x^2}\right)(x^2+1)}$$
 for  $x \in \mathbb{R}$ ,  $x \ge 0$ .

Considering the fact that  $\sqrt{x^2} = |x|$ , and also the expression for g'(x)(ii) above, show that g is increasing for x < 0.

(9 marks)

(d) A new function,  $\emph{h}$  , is created by restricting the domain of  $\emph{g}$  , such that

$$h(x) = \arccos\left(\frac{x^2 - 1}{x^2 + 1}\right), x \in \mathbb{R}, x \ge 0.,$$

Find an expression for  $h^{-1}(x)$ , carefully considering the range of h in determining your final answer.

(5 marks)

(e) State the domain of  $h^{-1}(x)$ .

(2 marks)