

 $IB \cdot DP \cdot Maths$

Q 2 hours **?** 12 questions

Practice Paper 1

Scan here to return to the course

or visit savemyexams.com

Total Marks

/110

1 (a) (i) Expand $(2k-1)^3$

(ii) Hence, or otherwise, show that $(2k-1)^3 - (2k-1) = 8k^3 - 12k^2 + 4k$

(2 marks)

(b) Thus prove, given k > 1, $k \in \mathbb{N}$, that the difference between an odd natural number greater than 1 and its cube is always even.

(3 marks)

Let *A* and *B* be events such that P(A) = 0.3, P(B) = 0.75 and $P(A \cup B) = 0.9$. Find P(B|A).

(5 marks)

3 (a) The functions *f* and *g* are defined such that f(x) = 6x + 7 and $g(x) = \frac{x-5}{3}$.

Show that $(f \circ g)(x) = 2x - 3$.

(2 marks)

(b) Given that $(f \circ g)^{-1}(a) = 6$, find the value of a.

(3 marks)

4 The following diagram shows the graph of y = f(x). The graph has a horizontal asymptote at y = -2. The graph crosses the *x*-axis at x = -1 and x = 1, and the *y*-axis at y = 1.

On the following set of axes, sketch the graph of $y = [f(x)]^2 - 2$, clearly showing any asymptotes with their equations along with the coordinates of any local maxima or minima.

(5 marks)

5 Given that $\frac{dy}{dx} = 3x^2 \cos(3x^3 + \frac{\pi}{2})$ and that the graph of y passes through the point (0, -1), find an expression for y in terms of x.

6 The plane Π has the Cartesian equation 5x - y - z = 15.

The line L has the vector equation $r = \begin{pmatrix} -4 \\ 2 \\ -1 \end{pmatrix} + \lambda \begin{pmatrix} k \\ -2 \\ 2 \end{pmatrix}$, $\lambda, k \in \mathbb{R}$. The acute angle between the line L and the plane Π is 60°.

Find the possible values of k.

(7 marks)

7 (a) Show that $\log_4(\cos 2x + 13) = \log_2\sqrt{\cos 2x + 13}$

(3 marks)

(b) Hence or otherwise $\log_2(3\sqrt{2}\cos x) = \log_4(\cos 2x + 13)$ for $-\frac{\pi}{2} < x < \frac{\pi}{2}$

(5 marks)

8 (a) The function f is defined by $f(x) = e^{2x} - 4e^x + 1$, $x \in \mathbb{R}$, $x \le a$. The graph of y = f(x) is shown in the following diagram.

Find the largest value of a such that f has an inverse function.

(3 marks)

(b) For this value of a, find an expression for $f^{-1}(x)$, stating its domain.

(5 marks)

9 A continuous random variable X has the probability density function f given by

$$f(x) = \begin{cases} \frac{\pi x}{81} \sin\left(\frac{\pi x}{9}\right), & 0 \le x \le 9\\ 0, & \text{otherwise} \end{cases}$$

Find $P(3 \le X \le 6)$.

(7 marks)

10 (a) Express $-2 - 2\sqrt{3}i$ in the form $re^{i\theta}$, where r > 0 and $-\pi < \theta \le \pi$.

(5 marks)

(b) Let the roots of the equation $z^3 = -2 - 2\sqrt{3}i$ be u, v and w.

Find *u*, *v* and *w* expressing your answers in the form $re^{i\theta}$, where r > 0 and $-\pi < \theta \le \pi$.

(5 marks)

(c) On an Argand diagram *u*, *v* and *w* are represented by the points U, V and W respectively.

Find the area of triangle $UVW. \label{eq:stars}$

(d) By considering the sum of the roots u, v and w, show that

$$\cos\left(\frac{2\pi}{9}\right) + \cos\left(\frac{4\pi}{9}\right) + \cos\left(\frac{8\pi}{9}\right) = 0$$

(4 marks)

11 (a) The function *f* is defined by $f(x) = 2e^{\sin 2x}$.

Find the first two derivatives of f(x) and hence find the Maclaurin series for f(x) up to and including the x^2 term.

(8 marks)

(b) Show that the coefficient of x^3 in the Maclaurin series for f(x) is zero.

(4 marks)

(c) Using the Maclaurin series for $\arctan x$ and $e^x - 1$, find the Maclaurin series for $\arctan(e^{2x} - 1)$ up to and including the x^3 term.

(6 marks)

(d) Hence, or otherwise, find $\lim_{x \to 0} \frac{f(x) - 2}{\arctan(e^{2x} - 1)}$

(3 marks)

12 (a) Let $f(x) = \frac{\ln px}{qx}$ where x > 0, $p, q \in \mathbb{R}^+$.

Show that
$$f'(x) = \frac{1 - \ln px}{qx^2}$$

(3 marks)

(b) The graph of f has exactly one maximum point A.

Find the *x*-coordinate of A.

(3 marks)

(c) The second derivative of *f* is given by $f''(x) = \frac{2\ln px - 3}{qx^3}$. The graph of *f* has exactly one point of inflexion B.

Show that the *x*-coordinate of B is $\frac{e^{\frac{3}{2}}}{p}$.

(3 marks)

(d) The region R is enclosed by the graph of f, the x-axis, and the vertical lines through the maximum point A and the point of inflexion B.

Calculate the area of R in terms of q and show that the value of the area is independent of p.

(7 marks)

