

IB · **DP** · **Chemistry**

Practice Paper 1

Scan here to return to the course

or visit savemyexams.com

Total Marks

/40

1 A periodic table is needed to answer this question

A coin contains 5.869% Nickel by mass. If the coin weighs 10.00g, how many Nickel atoms are in the coin?

- **A.** 4.30×10^{22}
- **B.** 3.01×10^{23}
- **C.** 6.02×10^{25}
- **D.** 6.02×10^{21}

(1 mark)

2 A periodic table is needed for this question

What mass of a methane, CH₄, would occupy a volume of 3 dm ³ at 25°C and 100 kPa pressure?

A.
$$\frac{100000 \times 3 \times 16.05}{8.314 \times 298}$$

B.
$$\frac{100 \times 0.003 \times 16.05}{8.314 \times 298}$$

C.
$$\frac{100000 \times 0.003 \times 16.05}{8.314 \times 25}$$

D.
$$\frac{100000 \times 0.003 \times 16.05}{8.314 \times 298}$$

3 How many ions are present in 0.02 mol of $(NH_4)_3PO_4$?

A.
$$8.0 \times 10^{-2}$$

B.
$$1.2 \times 10^{22}$$

C.
$$4.8 \times 10^{22}$$

D.
$$2.4 \times 10^{23}$$

(1 mark)

4 A periodic table is needed for this question

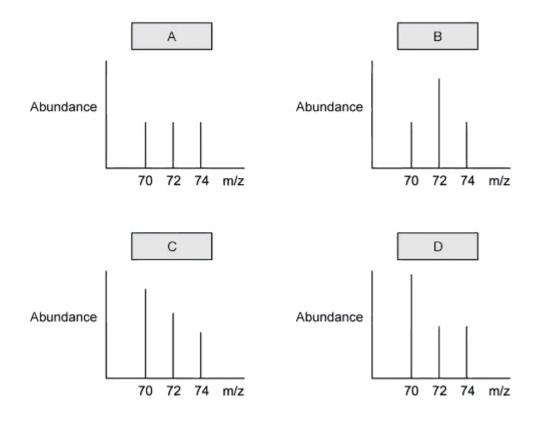
Which row correctly describes the subatomic particles found in ${}^{26}{\rm Mg}^{2+}$?

	protons	neutrons	electrons
Α	10	14	12
В	12	14	10
С	12	26	10
D	14	12	12

(1 mark)

5 Which of the following calculations gives the correct calculation to find the energy, in kJ, for a photon of blue light given the wavelength λ = 550 nm.

$$h = 6.626 \times 10^{-34} \text{J s}; c = 2.988 \times 10^8 \text{ m s}^{-1}$$


A.
$$\frac{6.626 \times 10^{-34} \times 2.988 \times 10^{8}}{550 \times 10^{-9}}$$

B.
$$\frac{6.626 \times 10^{-34} \times 2.988 \times 10^8}{550 \times 1000}$$

C.
$$\frac{6.626 \times 10^{-34} \times 2.988 \times 10^{8}}{550 \times 10^{-9} \times 1000}$$

D.
$$\frac{6.626 \times 10^{-34} \times 2.988 \times 10^8}{2.988 \times 10^8 \times 1000}$$

6 Chlorine has two naturally occurring isotopes, ³⁵Cl and ³⁷Cl, whose abundance is 75% and 25% respectively. The mass spectrum of chlorine gas would be

mark)
mark)

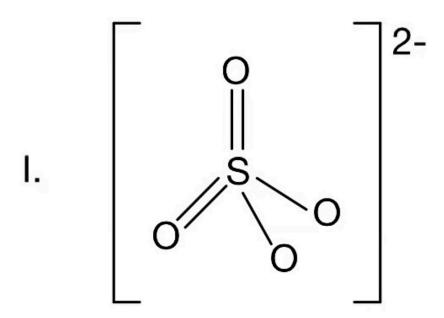
10 In which complexes does iron have an oxidation state of +3?

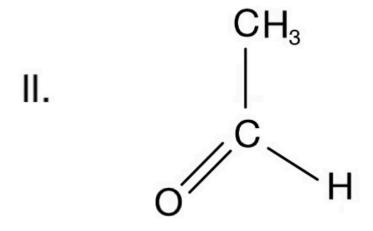
- I. $[Fe(H_2O)_6]^{3+}$
- II. $[Fe(H_2O)_5(CN)]^{2+}$
- III. $[Fe(CN)_6]^{3-}$
- **A.** I and II only
- **B.** I and III only
- **C.** II and III only
- **D.** I, II and III

(1 mark)

11 Which of the following dipole labels are **not** correct?

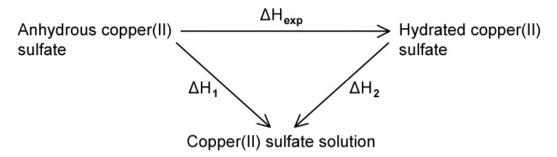
- A C O in propanol
- $B \qquad \ \, \begin{matrix} \delta + \ \delta \text{-} \\ C = O \end{matrix} \text{ in propanal }$
- c $\begin{array}{cc} \delta^+ & \delta^- \\ C & -H \end{array}$ in propane
- $\begin{array}{cc} \mathbf{D} & \stackrel{\delta + \ \delta \text{-}}{C \ -CI} \text{ in chloropropane} \end{array}$


(1 mark)


12 Which row in the table is correct?

	Shape of diamond structure	Melting point of buckminsterfullerene	Bond angle in graphene
Α	Square planar	Relatively high	90°
В	Tetrahedral	Relatively low	107°
С	Trigonal Planar	Relatively high	109.5°
D	Tetrahedral	Relatively low	120°

13 Which species contain delocalised electrons?


- **A.** I and II only
- **B.** I and III only

- C. II and III only
- **D.** I. II and III

- **14** Which systems are correctly described?
 - I. Matter and energy can be transferred across the boundary of an open system
 - II. Only matter can be transferred across the boundary of a closed system
 - III. Matter and energy cannot be transferred across the boundary of an isolated system
 - **A.** I and II only
 - **B.** I and III only
 - **C.** II and III only
 - **D.** I, II and III

(1 mark)

15 The hydration enthalpy of anhydrous copper(II) sulfate, labelled as ΔH_{exp} , cannot be measured directly. It can be found indirectly by determining the solution enthalpies of anhydrous and hydrated copper(II) sulfate.

Which of the following statements correctly explains why the value for ΔH_{exp} for this reaction cannot be measured directly?

- I. Hydrated copper(II) sulfate is not produced in a controlled manner
- II. Dissolving of the solid is difficult to avoid
- III. Heat energy is trapped inside the solid copper(II) sulfate

- **A.** I and II only
- **B.** I and III only
- **C.** II and III only
- **D.** I, II and III

16 Which of the following conditions will mean a reaction is never feasible?

	ΔΗ	ΔS	Temperature
Α	Negative	Positive	High
В	Positive	Negative	High
С	Negative	Negative	Low
D	Positive	Positive	High

(1 mark)

17 Thermodynamic data for the components for magnesium oxide are

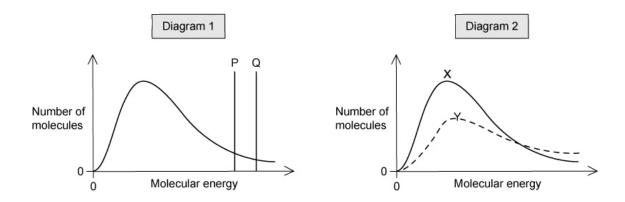
Name of enthalpy change	Energy change (kJ mol ⁻¹)
Enthalpy of formation of magnesium oxide	-602
Enthalpy of atomisation of magnesium	150
First and second ionisation energy of magnesium	2188
Enthalpy of atomisation of oxygen	248
First and second electron affinity of oxygen	702

Which of the following is used to calculate the lattice enthalpy of magnesium oxide

C. -602 - 150 - 2188 -
$$\frac{248}{2}$$
 - 702

(1 mark)

18 Zinc reacts with copper sulfate according to the following equation:

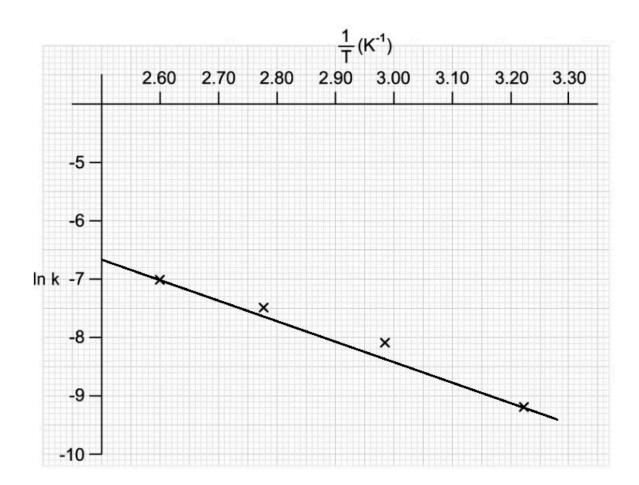

$$Zn(s) + CuSO_4(aq) \rightarrow Cu(s) + ZnSO_4(aq)$$

Rates of reaction can be found by measuring how certain properties change during the course of the reaction. Which of these properties could be used?

- Change in volume 1
- Change in temperature 2
- Change in colour 3
- **A.** 1 and 2 only
- **B.** 1 and 3 only
- **C.** 2 and 3 only
- **D.** 1, 2 and 3

(1 mark)

19 Boltzmann distributions are shown in the two diagrams below.


In diagram 1, one line, P or Q, corresponds to the activation energy in the presence of a catalyst and the other line corresponds to the activation energy of the same reaction in the absence of a catalyst.

In diagram 2, one curve, X or Y, corresponds to a temperature higher than that of the other curve.

Which combination gives the correct curve and line?

	presence of catalyst	higher temperature
А	Р	Х
В	Р	Υ
С	Q	X
D	Q	Y

- **20** Which of the following statements about the rate constant, *k*, are correct?
 - I. High values of *k* are associated with fast reactions
 - II. The rate constant is affected by temperature
 - III. The units of k are independent of the orders of reaction
 - **A.** I and II only
 - **B.** I and III only
 - C. II and III only
 - **D.** I, II and III

- **21** Which of the following statements about the Arrhenius plot are correct?
 - The gradient has a value of E_a / R

- The intercept on the y-axis is ln A
- III. The Arrhenius plot will give a value for activation energy in J mol⁻¹
- **A.** I and II only
- **B.** I and III only
- C. II and III only
- **D.** I, II and III

22 When gaseous dinitrogen pentoxide, N_2O_5 (g), decomposes at 358 K, the following equilibrium is established:

$$2N_2O_5(g) = 4NO_2(g) + O_2(g)$$

2.0 mol of N_2O_5 (g) were placed in a 1.0 dm³ container and allowed to reach equilibrium. At equilibrium 1.0 mol of N_2O_5 (g) were present. What is the value of K_c ?

- **A.** 0.125
- **B.** 1
- **C.** 2
- **D.** 8

23 Which change will not decrease the entropy of a system?
A. Changing state from gas to liquid
B. Decreasing the temperature
C. A reaction where two moles of gaseous reactants changes to four moles of gaseous products
D. Reducing the volume of the container for a gaseous reaction
(1 mark)
24 Using your knowledge of the Brønsted-Lowry theory, which of the following correctly describes ammonia?
A. neutral
B. acid
C. base
D. amphoteric
(1 mark)

25 Iron structures can be damaged by dry deposition such as the equation below:

Fe (s) +
$$SO_2$$
 (g) + O_2 (g) \rightarrow Fe SO_4 (s)

Which is true?

- I. Iron is a reducing agent
- II. Sulfur is a reducing agent
- III. The enthalpy change is ΔH_f
- A. I and II only
- **B.** I and III only
- **C.** II and III only
- **D.** I, II and III

(1 mark)

- **26** Which of the following statements is **not** correct?
 - **A.** A Brønsted-Lowry base is a proton acceptor
 - **B.** Ammonia can act as a Brønsted-Lowry base and Lewis base
 - **C.** A Lewis acid is an electron pair acceptor
 - **D.** A hydroxide ion can only act as a Lewis base

(1 mark)

27 The table shows the p K_a and K_a values for four acids

Acid	p <i>K</i> _a	Ka
Butanoic Acid	-	1.51 x 10 ⁻⁵
Nitrous acid	3.1	-
Lactic acid	3.4	-
Phenol	-	1 x 10 ⁻¹⁰

Which of the following is the correct order of increasing strength of the acids

- **A.** Phenol < butanoic acid < lactic acid < nitrous acid
- **B.** Nitrous acid < lactic acid < butanoic acid < phenol
- **C.** Nitrous acid < butanoic acid < phenol < lactic acid
- **D.** Phenol < lactic acid < butanoic acid < nitrous acid

(1 mark)

- **28** Below are three statements about voltaic cells.
 - I. A redox reaction takes place which produces electrical energy
 - II. At the cathode an oxidation reaction occurs
 - III. Electrons move from the anode to the cathode

The correct statements are

- **A.** I and II only
- **B.** I and III only
- **C.** II and III only
- **D.** I, II and III

29 Use the following electrode potentials to answer the question.

$$Sn^{2+}$$
 (aq) + $2e^{-} = Sn$ (s) $E^{\theta} = -0.14 \text{ V}$

$$Fe^{3+}$$
 (ag) + $e^{-} = Fe^{2+}$ (ag) $E^{\theta} = +0.77 \text{ V}$

What will be the EMF, in V, when the following voltaic cell is connected?

$$Sn (s) + 2Fe^{3+} (aq) \rightarrow 2Fe^{2+} (aq) + Sn^{2+} (aq)$$

- **A.** -0.91
- **B.** +0.63
- **C.** +1.68
- **D.** +0.91

(1 mark)

30 Which of the following can be used for a standard hydrogen electrode (SHE)?

	Electrode	Electrolyte solution
A.	Graphite	1 mol dm ⁻³ H ₂ SO ₄
В.	Graphite	1 mol dm ⁻³ HCl
C.	Platinum	0.5 mol dm ⁻³ H ₂ SO ₄
D.	Platinum	0.5 mol dm ⁻³ HCl

31	Which of the halogenoalkanes shown below contains a tertiary carbon atom?	
	A. CH ₃ CH ₂ CH ₂ Cl	
	B. CH ₃ CH ₂ CH(CH ₃)Br	
	C. C(CH ₃) ₃ Cl	
	D. CH ₃ CHBrCH ₂ CH ₃	
		(1 mark)
32	Which compound will react most readily by an S _N 2 mechanism?	
	A. (CH ₃) ₃ CBr	
	B. CH ₃ CH ₂ CH ₂ CH ₂ CI	
	C. CH ₃ CH ₂ CH ₂ CH ₂ Br	
	D. (CH ₃) ₃ CC/	
		(1 mark)
33	Shown below is a reaction sequence starting with 1-chlorobutane.	
	ı II III	
	$C_4H_9CI \rightarrow C_4H_9OH \rightarrow C_3H_7COOH \rightarrow C_3H_7COOC_3H_7$	
	What is the correct classification of the types of reactions shown?	

	I	II	III
Α	substitution	oxidation	substitution
В	addition	substitution	condensation
С	oxidation	substitution	condensation
D	substitution	oxidation	condensation

- **34** Which of the following would not be a product of the reaction of pent-1-ene with HCl?
 - **A.** CH₂CICHCICH₂CH₂CH₃
 - **B.** CHClCH₂CH₂CH₂CH₃
 - **C.** CH₃CH₂CHClCH₂CH₃
 - **D.** CH₃(CH₂)₂CHClCH₃

35 Compound **K**, $C_5H_{12}O$, is oxidised by acidified sodium dichromate(VI) to compound **L**.

Compound L reacts with butan-2-ol in the presence of a little concentrated sulfuric acid to give liquid **M**.

What could be the formula of liquid **M**?

- **A.** $(CH_3)_2CHCH_2CO_2C(CH_3)_3$
- **B.** CH₃(CH₂)₃CO₂(CH₂)₃CH₃
- C. $CH_3(CH_2)_3CO_2CH(CH_3)CH_2CH_3$
- **D.** CH₃(CH₂)₂CO₂CH₂CH₂(CH₃)₂

(1 mark)

36 Which two molecules are cis-trans isomers of each other?

$$\mathbf{W} \qquad \begin{array}{c} \mathbf{H_3CH_2C} \\ \mathbf{HOOC} \end{array} \mathbf{C} = \mathbf{C} \\ \mathbf{CH_2CH_3} \end{array}$$

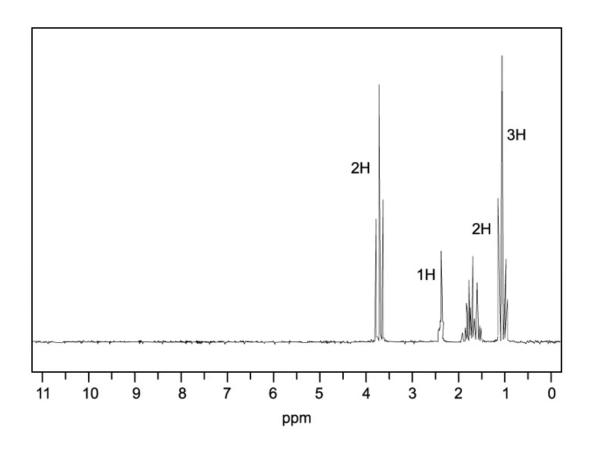
X
$$H_3CH_2C$$
 $C=C$ CH_2CH_3

Y
$$H_3CH_2C$$
 $C=C$ H

$$Z$$
 H_3CH_2C
 $C=C$
 CH_2CH_3

- **A.** X and Z
- **B.** X and Y
- C. W and Y
- **D.** W and Z

37 The synthesis of ethyl butanoate can be carried out in three steps:


I II III
$$C_4H_9Br \ \rightarrow \ C_4H_9OH \ \rightarrow \ C_3H_7COOH \ \rightarrow \ C_3H_7COOC_2H_5$$

What is the correct classification of the steps?

	I	II	III
Α	substitution	oxidation	condensation
В	addition	substitution	condensation
С	oxidation	substitution	condensation
D	substitution	oxidation	substitution

(1 mark)

38 Below is a ¹H NMR spectrum for an unknown organic compound. The relative areas under the peaks are labelled

Which of the following compounds could give this spectrum?

- **A.** propan-1-ol, CH₃CH₂CH₂OH
- **B.** propan-2-ol, $CH_3CH(OH)CH_3$
- **C.** methyoxyethane, CH₃OCH₂CH₃
- **D.** pentan-2-one, CH₃CH₂CH₂COCH₃

39 Propanone is made by a two stage process. The second stage involves oxidation. Propene \rightarrow X \rightarrow Propanone What is the functional group of compound X? **A.** COOH **B.** OH **C.** coo **D.** C=O (1 mark) **40** Which spectroscopic technique can be used to determine bond length and angles? **A.** Mass spectroscopy **B.** IR spectroscopy **C.** X-ray diffraction **D.** ¹H NMR spectroscopy (1 mark)