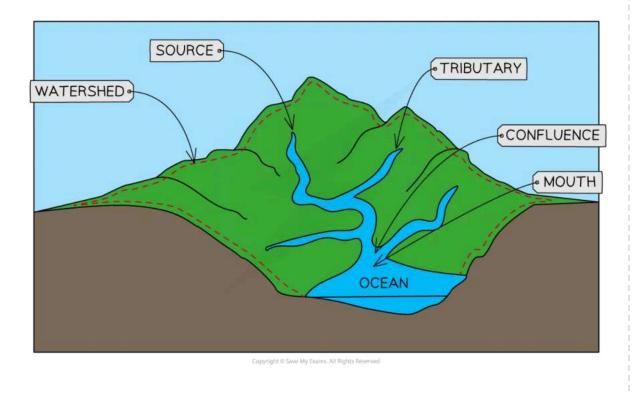


Drainage Basin Hydrology & Geomorphology

Contents

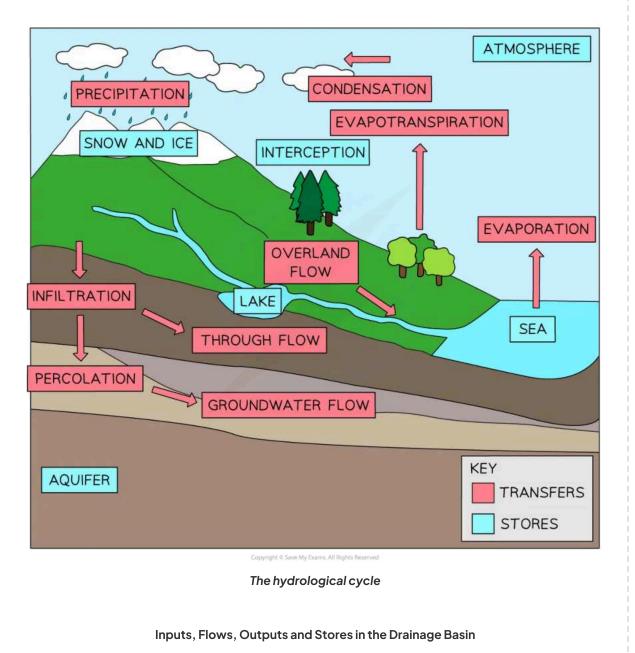

- ✤ Drainage Basin System
- * River Discharge & Channel Characteristics
- ✤ River Processes
- ✤ River Landforms

Drainage Basin System

Drainage Basin System

- Drainage basins are areas of land where precipitation (rain or snow melt) drains downhill into a body of water such as a river, lake, wetland or ocean
- Drainage basins are **open systems** with inputs, transfers and outputs
- Features of a drainage basin include:
 - Watershed
 - Source
 - Tributary
 - Confluence
 - Floodplain
 - Mouth

Diagram showing the features of a drainage basin



Page 2 of 26

Drainage basin features

- After falling as precipitation, water can take many different routes before it reaches its end point
- Water can be stored in the system for a few days, years or centuries in aquifers

Diagram of the hydrological cycle

Flows	Stores	Outputs
Throughflow	Cryosphere	Transpiration
Surface run-off (overland flow)	Channel stores	Evaporation
Groundwater(base) flow		Sublimation
infiltration	Vegetation	
Percolation	Soil	
	Aquifers	
	Atmosphere as water vapour	
	Throughflow Surface run-off (overland flow) Groundwater(base) flow infiltration	ThroughflowCryosphereSurface run-off (overland flow)Channel storesGroundwater(base) flowVegetationinfiltrationSoilPercolationAquifers

Inputs

- **Precipitation** is the primary input into the drainage basin
- Precipitation is rainfall, snow, frost, hail and dew
- Key characteristics of precipitation impacting local **hydrology** (movement of water) include:
 - Total amount of precipitation
 - Intensity
 - Type (e.g. snow or rain)
 - Geographic distribution
 - Variability

Flows

Infiltration

- Infiltration is the process where water permeates, or is absorbed by the soil
- Infiltration capacity is the maximum rate at which rain can be absorbed in a given condition
- Infiltrated water becomes chemically enriched as it collects minerals and organic acids from vegetation and soil
- Plant roots create fine channels for percolation known as percolines

Surface runoff

Page 4 of 26

- **Overland flow** (surface runoff) occurs when precipitation exceeds the infiltration rate or when the soil becomes saturated
- High precipitation intensity and low infiltration capacity lead to common surface runoff in areas like semi-arid regions and cultivated fields
- Surface flow happens near streams and river channels
- Throughflow refers to water moving naturally through soil pipes and percolines
- **Base flow** is the constant part of a river's discharge supplied by groundwater seepage into the riverbed, which slightly increases after wet periods

Stores

Vegetation

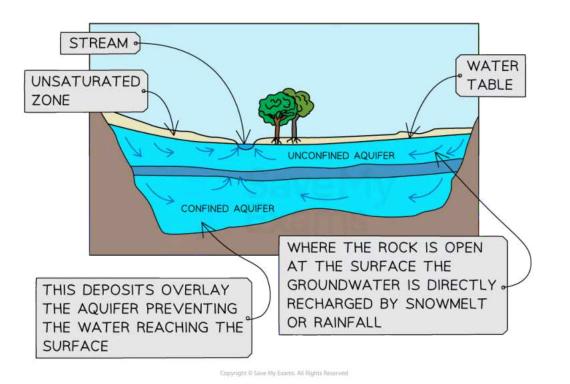
- Vegetation interception is when water remains on the surface of the leaves before evaporation
- Interception loss varies based on vegetation type
- Coniferous trees intercept more water in winter
- Deciduous trees intercept more water in summer

Soil

- Soil moisture is subsurface water within the soil
- Field capacity is the retained water level after excess drainage and near saturation
- Wilting point is the moisture range causing permanent plant wilting and setting plant growth limits

Aquifers

- Aquifers serve as significant water reserves
- Water in aquifers moves slowly and absorbs rainfall that would otherwise rush into streams
- Aquifers help maintain stream flow during extended dry spells
- Aquifers can lead to springs, which can become the source of streams or rivers
- Groundwater is subsurface water that percolates slowly into the rock beneath the soil
- Percolation speed depends on rock permeability
- Carboniferous limestone and chalk percolation speed can be relatively fast
- The permanently saturated zone in rocks and sediments is the **phreatic zone**


Page 5 of 26

SaveMyExams

- The upper layer is known as the **water table**
- Seasonally variability: aquifers are higher in winter due to increased precipitation
- The seasonally wet and dry zone is called the **aeration zone**
- Groundwater accounts for 96.5% of all freshwater on Earth but it can take up to 20,000 years to recycle

Aquifer

Aquifer

Type of rechargeHow groundwater rechargesInfiltrationThrough total precipitation at ground surfaceSeepageThrough banks and beds of surface waterLeakage and inflowFrom adjacent rocks and aquifers

Groundwater recharge

Page 6 of 26

Artificially	From irrigation and reservoirs		Your notes
		1	Tournotes

Cryosphere

- The cryosphere includes Earth's snow and ice
- It contains up to 66% of the world's freshwater
- Over 97% of Earth's water is salty and freshwater resources are limited
- High-latitude and high-altitude regions store significant snow and ice
- Seasonal melting plays a key role in altering the basin's hydrological cycle

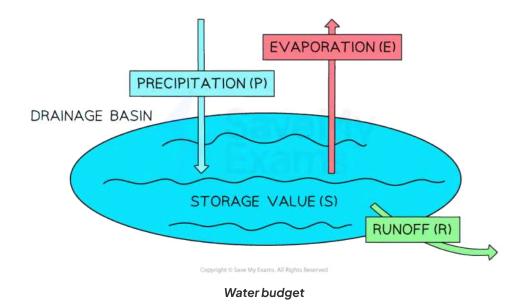
Outputs

- Evaporation is the conversion of liquid or solid substances into a gas
- Evaporation:
 - Involves the transformation of precipitation into water vapour in the atmosphere
 - Is most prominent over oceans and seas and is influenced by climatic conditions
 - Increases under warm, dry conditions
 - Decreases under cold, calm conditions
- Factors affecting evaporation include:
 - Temperature
 - Humidity
 - Wind speed
 - Availability of water
 - Vegetation
 - Surface colour

Evapotranspiration

- Transpiration is the release of water vapour from living plants through their leaves and into the atmosphere
- Evapotranspiration (EVT) represents the primary source of water loss
- EVT accounts for nearly 100% of annual precipitation in arid areas and 75% in humid regions

Page 7 of 26

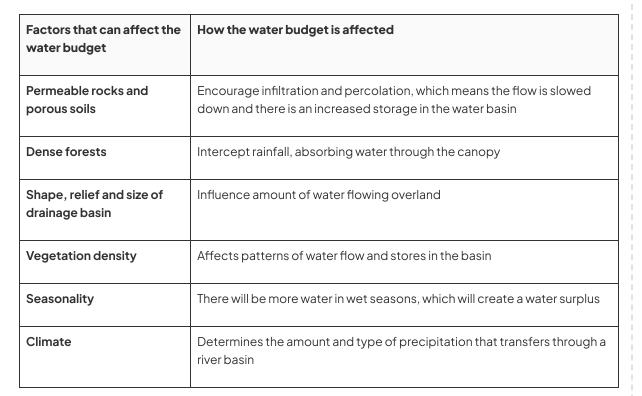

F Save My Exams Head to <u>www.savemyexams.com</u> for more awesome resources

- Evaporative losses can occur over ice and snow fields, barren rock slopes, desert areas, water surfaces and bare soil
- Potential evapotranspiration is determined by the availability of moisture.

The water budget

- Water budgets are the annual balance between inputs and outputs
- Water budgets can impact **soil water** availability
- The balances can be calculated at various scales, from global to local
- Water budgets at the regional level tell us the amount of water that is available for human use
- On a local scale, the water budget can tell us how much water is available in the soil

Diagram showing the water budget

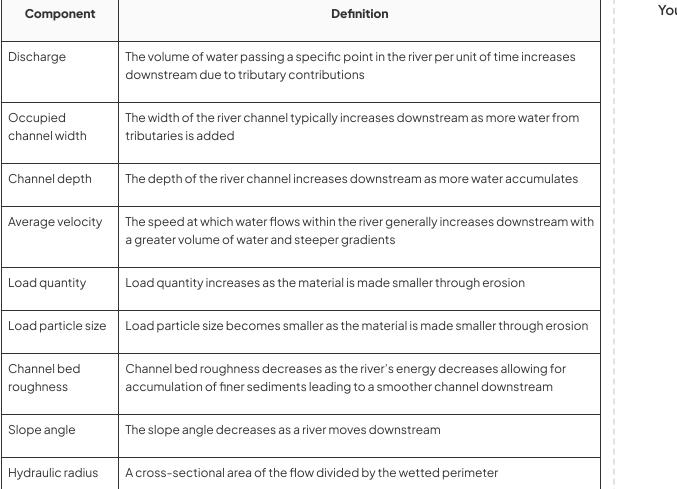


- The water budget uses the following equation: P + Qin = ET + ΔS + Qout
- P = precipitation (rain, snow, etc.)
- Qin = water flow into the watershed
- ET = quantity of evapotranspiration from soils, surface water, plants, etc.
- ΔS = Change in water storage
- Qout = sum of water flowing out of the watershed

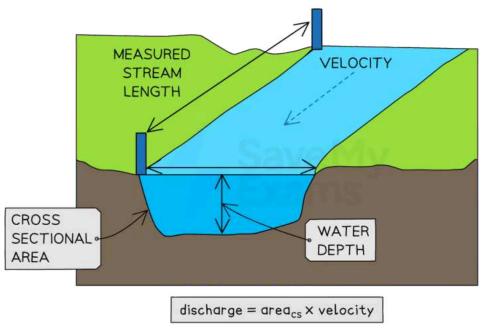
Page 8 of 26

Factors influencing the water budget

River Discharge & Channel Characteristics River Discharge & Stream Flow River discharge is the volume of water passing a given point over a set time As rivers move downstream the characteristic features change **Bradshaw model** UPSTREAM DOWNSTREAM DISCHARGE OCCUPIED CHANNEL WIDTH CHANNEL DEPTH AVERAGE VELOCITY LOAD QUANTITY LOAD PARTICLE SIZE CHANNEL BED ROUGHNESS SLOPE ANGLE (GRADIENT) Copyright © Save My Exams. All Rights Reserved Bradshaw model


Page 10 of 26

© 2015–2024 <u>Save My Exams, Ltd.</u> Revision Notes, Topic Questions, Past Papers


River Channel Characteristics

How to measure discharge in a river

Your notes

Copyright © Save My Exams. All Rights Reserved

Measuring river discharge

()

Worked Example

Calculating Discharge

Step One-Depth

- Calculate the mean depth
- All units of measurement should be the same
- The mean depth should be calculated in meters not centimetres

Depth measurements for Site One

	1	2	3	4	5	6	7	8	Mean
Depth in mm	0.05	0.12	0.17	0.23	0.30	0.35	0.28	0.18	0.21

• To calculate the mean depth add the 8 measurements together and divide by 8

• This gives a measurement of mean depth = 0.21m

Step Two-Cross-sectional area

Cross-sectional area (m²) = width (m) x mean depth (m)

Page 12 of 26

If the width is 4mx mean depth 0.21m the cross-sectional area = 0.84m²
Step Three - Velocity

Time Measurements for Site One

Time Measurement	Left	Center	Right
lst	35	28	37
2nd	42	30	39
3rd	36	27	45
Mean	37.7	28.3	40.3

[•] To work out the mean time taken for the float to travel 10 metres for site one the following calculations need to be completed:

- **37.7+28.3+40.3-106.3**
- 106.3 is then divided by 3 (number of positions) to give a mean time for site one of 35.43 seconds
- Divide this by 10 to get the velocity in m/s
- 35.43/10=3.543 seconds
- The surface velocity for site one is 3.543 m/s

Step Four-Discharge

- Discharge = Cross-sectional Area 0.84m²x Velocity 3.543 m/s
- Discharge = 2.98 m³/s (cumecs)

Factors affecting stream flow

- Hydraulics is the study of water flow in channels
- Water flow is determined by gravity and frictional resistance with the channel bed and banks
- Channel volume and shape affect the stream's energy
- When water flow is turbulent there will be **eddying** patterns
- Turbulence supports the lifting and suspension of fine particles
- Turbulent flow conditions include complex channel shapes, high velocities and **cavitation**
- Laminar flow is characterized by smooth and layered movements and is common in groundwater and glaciers but not in rivers
- Laminar flow occurs in shallow, smooth, straight channels with low velocities
- Rivers sediments remain undisturbed on the bed under laminar flow conditions

Page 13 of 26

- When water velocity is low turbulence is reduced
- When water levels rise the mean velocity and the hydraulic radius enable the stream to appear to be more turbulent

Velocity

- Friction causes uneven velocity distribution in a stream
- The water closest to the bed and banks moves slowly
- Water in the centre of the channel travels the fastest
- Maximum velocity occurs mid-stream, about one-third down
- Channel shape influences the velocity

Channel shape

- Stream efficiency is measured using hydraulic radius (cross-sectional area divided by wetted perimeter)
- Higher ratios indicate greater efficiency and less frictional loss
- Channel shape is influenced by both channel material and river forces
- Solid rock leads to slow changes and **alluvium** allows rapid changes
- Silt and clay create steep, deep, narrow valleys, while sand and gravel promote wide, shallow channels

Channel roughness

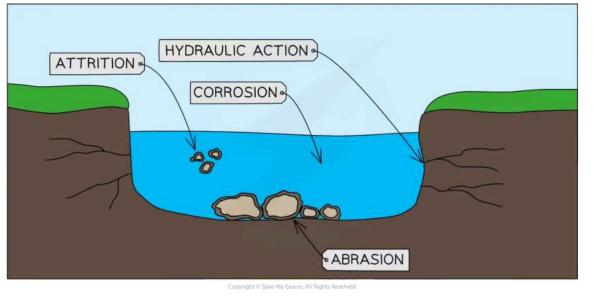
- Channel roughness introduces friction, reducing water velocity
- Friction arises from bed irregularities, boulders, trees, vegetation and water-bed and bank contact
- Manning's n is a formula describing the relationship between channel roughness and velocity

5	
Your note	s

River Processes

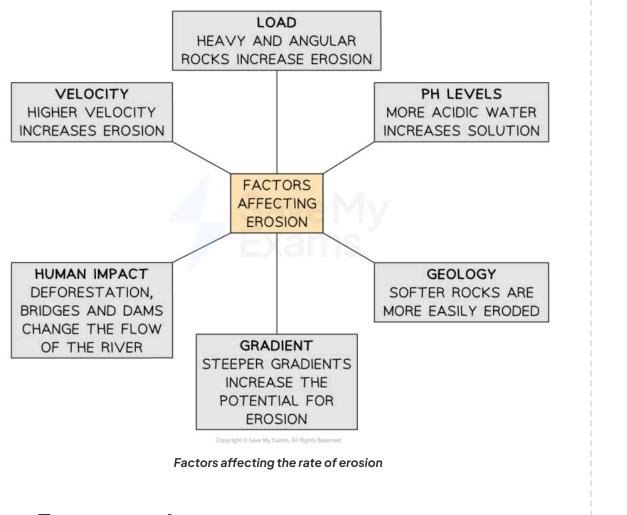
River Erosion

- River erosion is the wearing away of land as water flows past the bed and banks
- Erosion by rivers also provides material, which is carried down the river
- A river channel is eroded by:
 - Vertical erosion the cutting down of the river into the bed and deepening the channel
 - Lateral erosion the cutting in of the river to the bank and widening the channel

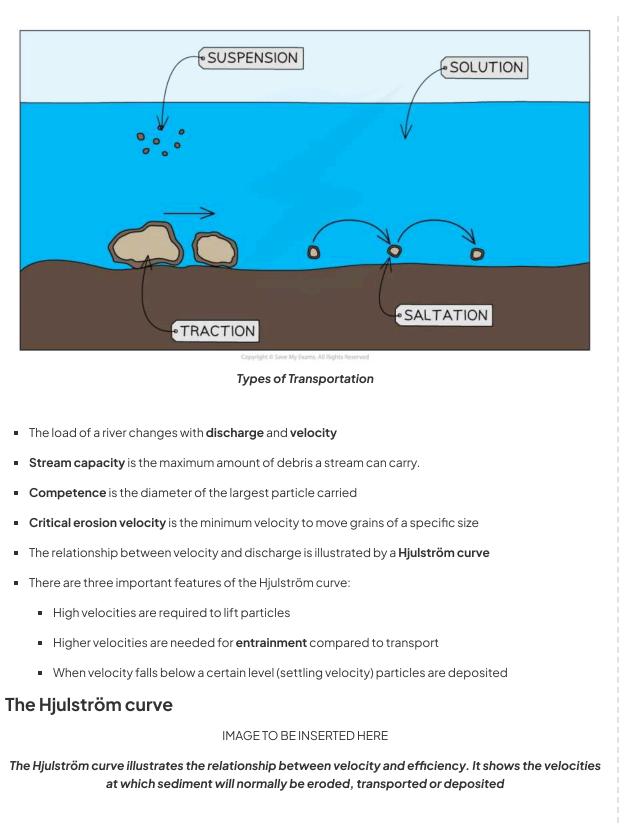

Four Methods of River Erosion

Erosional term	Definition
Hydraulic action	The force of the air and water into cracks in the river banks and beds
Attrition	The wearing away of the load as rocks knock against each other, making them smaller and rounder
Abrasion or corrasion	The scraping away of the bed and banks by material transported by the river
Solution or corrosion	Chemicals in the river dissolve minerals in the rocks within the bed and bank, carrying them away in solution

Methods of erosion


Your notes

Methods of erosion


Factors affecting rates of erosion

Your notes

River Transportation

- There are five processes of transportation
 - Suspension
 - Saltation
 - Traction
 - Solution
 - Floatation

Page 18 of 26

River Deposition

Deposition

- Deposition can take place for a number of reasons:
 - A decrease in the volume of water
 - A shallow gradient that decreases velocity
 - An increase in friction between water and the channel

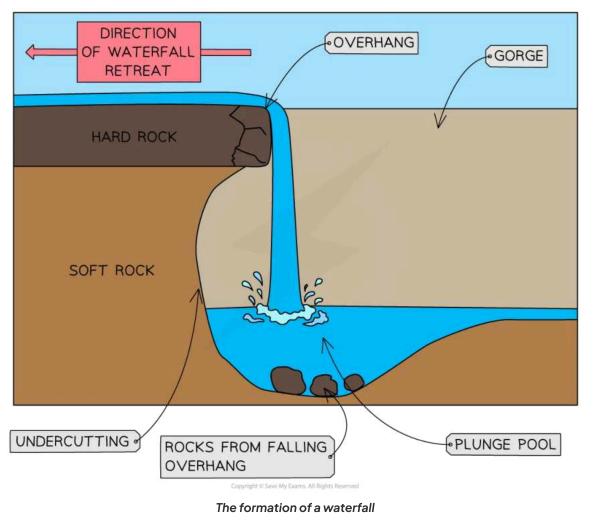
Braided channels

- Braided channels exhibit dynamic river environments
- Common in glacial rivers and arid regions
- Experience rapid changes in discharge, flow velocity and sediment processes
- Arid areas face flash floods, which cause erosion and sediment transport
- Glacial regions undergo surges and **diurnal** flow variations
- During peak flow, the erosion and transport processes dominate
- River braids merge and deposits are eroded
- Slower flow periods emphasise deposition
- The river divides into smaller braids.

Seasonality

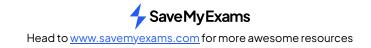
- River processes vary seasonally
- Monsoonal rivers erode and transport more sediment during the wet season
- Some rivers experience high spring flow due to snowmelt, such as those in Iceland

SaveMyExams

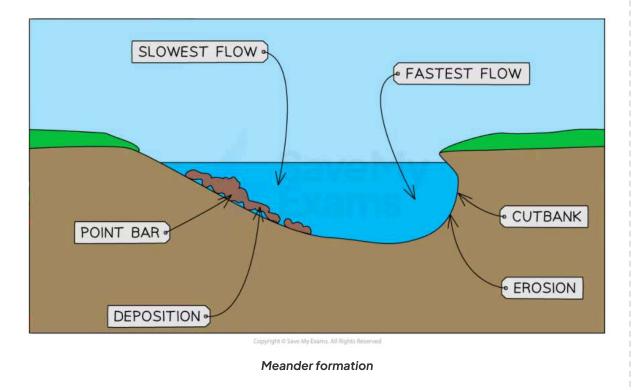

River Landforms

Upper Course Landforms

Waterfalls


- Occur on horizontally bedded rocks
- Soft rock is undercut by hydraulic action and abrasion
- Due to the weight of the water and no support, the waterfall collapses and retreats upstream
- Over thousands of years, waterfalls may create a gorge

Formation of a waterfall


Your notes

Middle & Lower Course Landforms

Meanders

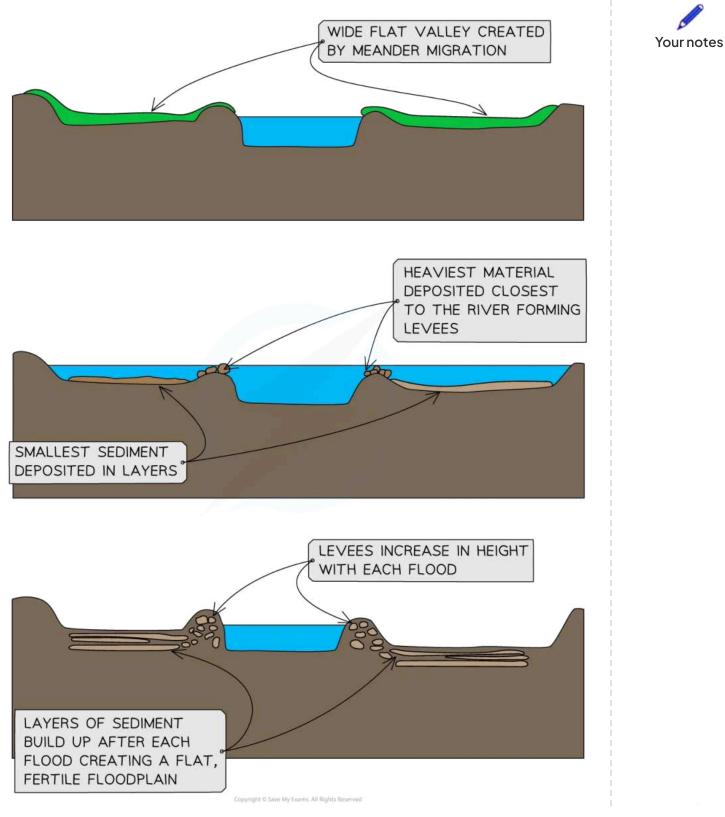
- Meanders are formed in rivers due to the combination of erosion and sediment deposition processes
- The river erodes the outer bank of a bend, creating a cutbank
- Deposition occurs along the inner bank, forming a **point bar**
- As the water flows faster along the outer bend (cutbank) it erodes the bank more, deepening the channel
- Sediment is deposited along the inner bend (point bar), causing the bank to build up
- Over time, erosional and depositional processes cause the river to develop a sinuous, meandering course

Cross-section through a meander

Floodplains

• When a river floods, a floodplain is formed

Page 21 of 26


- Alluvium is a mixture of sand and gravel that is eroded on the outside of the meander
- Floodplains are built up by channel deposition
- Floodplains consist of finer materials

Levees

- A landform of deposition
- Levees are raised banks
- Coarse material is deposited near the channel
- Finer material is deposited and carried to the floodplain
- Levees are found on the edge of the river
- They are formed by repeated flooding
- When a river floods, the river's energy is reduced
- Coarse material is dropped first and then lighter material
- Over time, the levees build up from coarse material

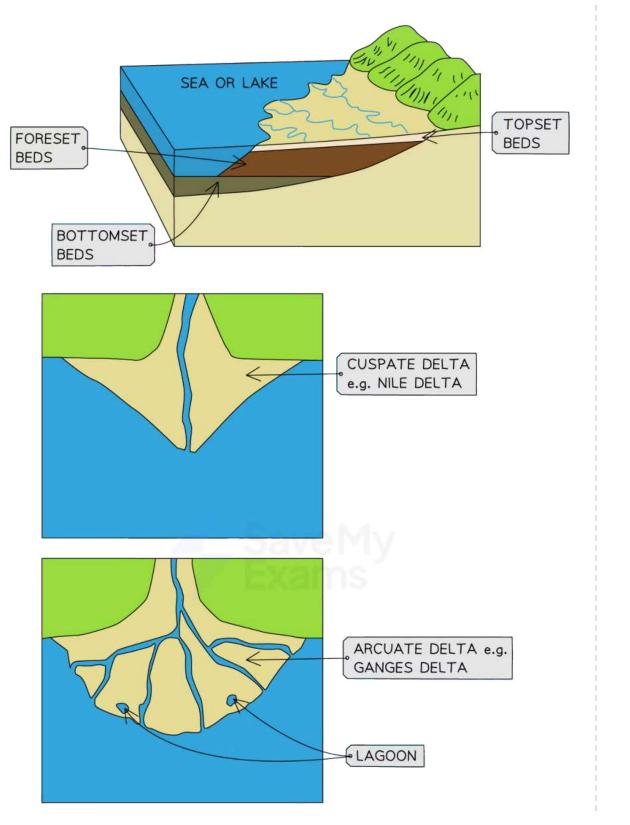
Floodplain and levee formation

Your notes

Page 23 of 26

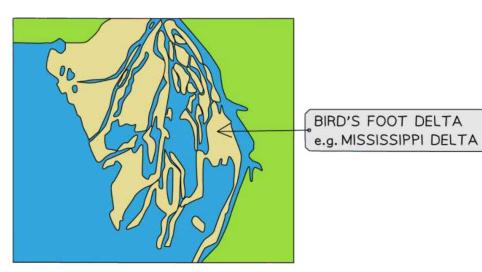
© 2015–2024 <u>Save My Exams, Ltd.</u> · Revision Notes, Topic Questions, Past Papers

The formation of floodplains and levees


Deltas

- Deltas are formed when streams flow into standing bodies of water
- Rivers must carry a large amount of sediment for deltas to form
- Flocculation increases deposition
- Bioconstruction increases deposition
- Delta formation must have a rapid drop in stream velocity
- There are a variety of delta formations, such as arcuate and bird's foot

Types of delta



Your notes

Page 25 of 26

Save My Exams ${\sf Head \, to \, \underline{www.savemyexams.com} \, for \, more \, awe some \, resources}$

Copyright © Save My Exams. All Rights Reserved