

The Metallic Model

Contents

- ✤ Properties of Metals & Their Uses
- ★ s & p Block Elements
- * Physical Properties of Transition Elements (HL)

Properties of Metals & Their Uses

Properties of Metals & Their Uses

What is metallic bonding?

- Metal atoms are tightly packed together in lattice structures
- When the metal atoms are in **lattice** structures, the electrons in their outer shells are free to move throughout the structure
- The free-moving **electrons** are called '**delocalised**' electrons and they are not bound to their atom
- When the electrons are **delocalised**, the metal atoms become **positively** charged
- The positive charges **repel** each other and keep the neatly arranged lattice in place
- There are very strong electrostatic forces between the positive metal centres and the 'sea' of delocalised electrons

Metallic bonding diagram

Your notes

The structure of metallic bonding has positive metal ions suspended in a 'sea' of delocalised electrons

What are the properties of metals?

Malleability

- Metallic compounds are malleable
- When a force is applied, the metal layers can slide
- The **attractive forces** between the metal ions and electrons act in all directions
- So when the layers slide, the metallic bonds are re-formed

Page 3 of 13

• The lattice is not broken and has changed shape

How metals are malleable diagram

Atoms are arranged in layers so the layers can slide when force is applied

Strength

- Metallic compounds are strong and hard
 - Due to the strong attractive forces between the metal ions and delocalised electrons

Electrical conductivity

- Metals can conduct electricity when in the solid or liquid state
 - In the solid and liquid states, there are **mobile electrons** which can freely move around and conduct electricity
- When a **potential difference** is applied to a metallic lattice, the delocalised electrons **repel** away from the negative terminal and move towards the positive terminal
 - As the number of outer electrons increases across a Period, the number of **delocalised charges** also increases:
 - Sodium = 1 outer electron
 - Magnesium = 2 outer electrons
 - Aluminium = 3 outer electrons
 - Therefore, the ability to conduct electricity also increases across a period

How metals conduct electricity diagram

Page 4 of 13

Your notes

- Density
- Toxicity
- Corrosion resistance
- Reactivity
 Lustre
- Sonority

- For example:
 - Aluminium is used in food cans because it is non-toxic and resistant to corrosion and acidic food stuffs
 - Copper is used in electrical wiring because it is a good electrical conductor and malleable / ductile
 - Stainless steel is used for cutlery as it is strong and resistant to corrosion

s & p Block Elements

Trends in s & p Block Metals

What determines the strength of metallic bonds?

- Not all metallic bonds are equal
- There are several factors that affect the **strength** of a metallic bond:

The charge on the metal ion

- The **greater the charge** on the metal ion, the greater the number of electrons in the sea of delocalised electrons and the greater the **charge difference** between the ions and the electrons
- A greater charge difference leads to a **stronger** electrostatic attraction, and therefore a stronger metallic bond
- This effect can be seen in melting point data across a period, as the charge on the metal ion **increases** without a significant change in ionic radius:

Melting point data of the Period 3 metals

Group	1	2	3 (13)
Metal	Sodium	Magnesium	Aluminium
Melting point / K	371	923	933

The melting point of the metal increases moving across a period, from left to right

The radius of the metal ion

- Metal ions with **smaller ionic radii** exert a greater attraction on the sea of delocalised electrons
- This greater attraction means a **stronger** metallic bond, requiring more energy to break
- This can be seen in data from metals, descending a group, where the charge on the ion remains constant but the ionic radius increases:

Melting point data of the Group 1 metals

Period	3 (13)	4	5
Metal	Sodium	Potassium	Rubidium
Melting point / K	371	336	312

The melting point of the metal decreases moving down a group

Page 7 of 13

Trends in Melting Points of Metals

- The **strength** of electrostatic attraction can be increased by:
 - Increasing the number of delocalised electrons per metal atom
 - Increasing the number of **positive charges** on the metal centres in the lattice
 - Decreasing the size of the metalions
- These factors can be seen in the trends across a period and down a group

Melting points of metals across a period

- If you compare the electron configuration of sodium, magnesium and aluminium you can see the number of valence electrons increases
 - Na = 1s²2s²2p⁶3s¹
 - Mg = 1s²2s²2p⁶3s²
 - AI = 1s²2s²2p⁶3s²3p¹
- Aluminium ions are also a smaller size than magnesium ions or sodium ions and these two factors lead to **stronger** metallic bonding which can be seen in the melting points
- The **stronger** the metallic bonding, the **more energy** is needed to break the metallic lattice and so the **higher** the melting point
- As we go across Period 3, we can see the effect of stronger metallic bonding on the metals
- **Remember:** Only the first three elements have metallic bonding in this graph

Melting point of elements across a period chart

Melting points as you go down a group of metals. The metallic bonding gets weaker from Li to Cs

😧 Examiner Tip

- You see from the chart that the melting point of aluminium is not that much higher than magnesium
- It is a reminder to us that these are trends and not rules about melting points and sometimes there are other factors which can result in subtle differences from what was expected
- One factor here is the metal packing structure, which can also influence the melting point
 - This is beyond what is required in the IB Chemistry syllabus, you just need to learn and explain the broad trends

Page 10 of 13

- Like other metals, transition metals have a metallic lattice structure
 - Layers of positive ions within a sea of delocalised electrons

Page 11 of 13

SaveMyExams

- Since the 3d and 4s subshells are so close in energy, the transition metals are able to delocalise their delectrons to form metallic bonds
- This causes transition metals to have particularly good electrical conductivity and high melting points

Why do transition metals have high melting points?

- The ability to delocalise the d-electrons means that transition metals have a greater electron density
 - This means that the electrostatic forces of attraction between the large positive charge of the cations and the sea of delocalised electrons are strengthened
 - The stronger forces of attraction result in a higher melting point as more energy is required to overcome them
- The melting points of s-block metals range from 27 °C for francium to 839 °C for calcium
 - As the following graph shows, all of the Period 4 transition metals have higher melting points than Group 1 and Group 2 metals
 - There is an exception to the lower melting points of s-block metals with a melting point of 1,287 °C for beryllium, due to the small size of a beryllium atom resulting in strong metallic bonding

Melting point graph

The Period 4 transition metals have higher melting points than s-block metals

Why do transition metals have high electrical conductivity?

- Transition metals have a large number of delocalised electrons
- Therefore, more electrons are able to move when a potential difference is applied
- This causes transition metals to have high electrical conductivity
- The three most conductive metals are:

1. Silver

Page 12 of 13

2. Copper - the most used metal in electrical cables due to a combination of cost and conductivity 3. Gold

• For more information about other characteristic properties of transition metals, see our revision note on the Characteristic Properties of Transition Elements

