

18.2 Calculations Involving Acids & Bases

Contents

- ★ 18.2.1 Acid & Base Dissociation Constants
- ✤ 18.2.2 Acid & Base Problem Solving

18.2.1 Acid & Base Dissociation Constants

Acid & Base Dissociation Constants

Weak acids

- A weak acid is an acid that partially (or incompletely) dissociates in aqueous solutions
 - For example, most carboxylic acids (e.g. ethanoic acid), HCN (hydrocyanic acid), H₂S (hydrogen sulfide) and H₂CO₃ (carbonic acid)
 - In general, the following equilibrium is established:

$\mathsf{HA}\,(\mathsf{aq}) + \mathsf{H}_2\mathsf{O}\,(\mathsf{I}) \rightleftharpoons \mathsf{A}^{\scriptscriptstyle -}\,(\mathsf{aq}) + \mathsf{H}_3\mathsf{O}^{\scriptscriptstyle +}\,(\mathsf{aq})$

OR

$HA(aq) \Rightarrow A^{-}(aq) + H^{+}(aq)$

- At equilibrium, the majority of HA molecules remain unreacted
- The position of the equilibrium is more over to the left and an equilibrium is established
- As this is an equilibrium, we can write an equilibrium constant expression for the reaction
- This constant is called the acid dissociation constant, K_a , and has the units mol dm⁻³

$$K_{a} = \frac{[A^{-}][H_{3}O^{+}]}{[HA]}$$
$$K_{a} = \frac{[A^{-}][H^{+}]}{[HA]}$$
Copyright © Save My Exams. All Rights Reserved

Acid dissociation constant expressions

- Carboxylic acids are weak acids
 - For example, propanoic acid, CH₃CH₂COOH (aq), dissociates according to the following equation which leads to the K_a expression for propanoic acid:

$CH_{3}CH_{2}COOH(aq) + H_{2}O(l) = CH_{3}CH_{2}COO^{-}(aq) + H_{3}O^{+}(aq)$

OR

$CH_{3}CH_{2}COOH (aq) \neq CH_{3}CH_{2}COO^{-} (aq) + H^{+} (aq)$

Page 2 of 13

$$K_{a} = \frac{[CH_{3}CH_{2}COO^{-}][H_{3}O^{+}]}{[CH_{3}CH_{2}COOH]}$$
$$K_{a} = \frac{[CH_{3}CH_{2}COO^{-}][H^{+}]}{[CH_{3}CH_{2}COOH]}$$

Acid dissociation constant expressions for propanoic acid

- Values of K_a are very small
 - For example, K_a for propanoic acid = 1.34×10^{-5} mol dm⁻³
- When writing the equilibrium expression for weak acids, we assume that the concentration of H₃O⁺
 (aq) due to the ionisation of water is negligible

Weak bases

- A weak base will also ionise in water and we can represent this with the base dissociation constant, K_b
- In general the equilibrium established is:

$$B(aq) + H_2O(I) = BH^+(aq) + OH^-(aq)$$

Base dissociation constant expression

- Amines are weak bases
 - For example, 1-phenylmethanamine, C₆H₅CH₂NH₂ (aq), dissociates according to the following equation which leads to the K_a expression for 1-phenylmethanamine:

 $C_6H_5CH_2NH_2(aq) + H_2O(I) \Rightarrow C_6H_5CH_2NH_3^+(aq) + OH^-(aq)$

$$K_{b} = \frac{[C_{6}H_{5}CH_{2}NH_{3}^{+}][OH^{-}]}{[C_{6}H_{5}CH_{2}NH_{2}]}$$

Base dissociation constant expression for 1-phenylmethanamine

pK_a and pK_b

 The range of values of K_a and K_b is very wide and for weak acids, the values themselves are very small numbers

Page 3 of 13

SaveMyExams

Head to www.savemyexams.com for more awesome resources

Table of K_a values

Acid	K _a /moldm ⁻³
Methanoic, HCOOH	1.77 × 10 ⁻⁴
Ethanoic, CH_3COOH	1.74 × 10 ⁻⁵
Benzoic, C ₆ H ₅ COOH	6.46 × 10 ⁻⁵
Carbonic, H ₂ CO ₃	4.30 × 10 ⁻⁷

Your notes

Copyright © Save My Exams. All Rights Reserved

- For this reason, it is easier to work with another term called pK_a for acids or pK_b for bases
- In order to convert the values we need to apply the following calculations:

$$pK_a = -\log K_a \qquad K_a = 10^{-pK_a}$$

$$pK_{b} = -\log K_{b} \qquad K_{b} = 10^{-pK_{b}}$$

Table of pK_a values

Acid	K _a ∕mol dm ⁻³	рKa
Methanoic, HCOOH	1.77 × 10 ⁻⁴	3.75
Ethanoic, CH_3COOH	1.74 × 10 ⁻⁵	4.75
Benzoic, C ₆ H ₅ COOH	6.46 × 10 ⁻⁵	4.18
Carbonic, H ₂ CO ₃	4.30 × 10 ⁻⁷	6.36

Copyright © Save My Exams. All Rights Reserve

• The range of **pK**_a values for most weak acids lies between 3 and 7

Relative Strengths of Acids and Bases

- The larger the *K*_a value, the stronger the acid
- The larger the **pK**_a value, the weaker the acid
- The larger the *K_b* value, the stronger the base
- The larger the *pK*_b value, the weaker the base

Page 4 of 13

🗲 Save My Exams

Head to www.savemyexams.com for more awesome resources

Your notes

 pK_a and pK_b tell us the relative strengths of acids and bases

Page 5 of 13

Relating Kw to Ka

The Ionic Product of Water and Temperature

- In all aqueous solutions, an equilibrium exists in water where a few water molecules dissociate into protons and hydroxide ions
- We can derive an equilibrium constant for the reaction:

$2H_2O(I) \Rightarrow H_3O^+(aq) + OH^-(aq)$

• The concentration of water is constant, so the expression for K_w is:

$K_{\rm w} = [{\rm H}_{\rm 3}{\rm O}^+][{\rm O}{\rm H}^-]$

- This is a specific equilibrium constant called the ionic product for water
- The product of the two ion concentrations is 1 x 10⁻¹⁴ mol² dm⁻⁶ at 25 °C
- For conjugate acid-base pairs, K_a and K_b are related to K_w

$K_{a}K_{b} = K_{w}$

• The conjugate base of ethanoic acid is the ethanoate ion, CH₃COO⁻ (aq)

 $CH_3COOH(aq) + H_2O(I) \Rightarrow CH_3COO^-(aq) + H_3O^+(aq)$

acid

conjugate base

• We can then put this in to the K_a expression

$$K_{a} = \frac{[CH_{3}COO^{-}][H_{3}O^{+}]}{[CH_{3}COOH]}$$

Copyright © Save My Exams. All Rights Reserved

Acid dissociation constant for ethanoic acid

• The ethanoate ion will react with water according to the following equation

$CH_3COO^-(aq) + H_2O(I) \Rightarrow CH_3COOH(aq) + OH^-(aq)$

• We can then put this in to the K_b expression

Base dissociation constant for the ethanoate ion

Page 6 of 13

- Now, these two expressions can be combined, which corresponds to
 - $K_a K_b = K_w$
 - $K_{\rm a} K_{\rm b} = 10^{-14}$
- Or we could say that
 - $pK_a + pK_b = pK_w$
 - pK_a + pK_b = 14
 - This makes the numbers much more easy to deal with as using K_a K_b = 10⁻¹⁴ will give very small numbers

$$K_{a}K_{b} = \frac{[CH_{3}COO^{-}][H_{3}O^{+}]}{[CH_{3}COOH]} \times \frac{[CH_{3}COOH][OH^{-}]}{[CH_{3}COO^{-}]}$$
$$= [H_{3}O^{+}][OH^{-}] = K_{w}$$

Combining K_a K_b expressions

- Or rearranging these:
 - $K_a = K_w / K_b$
 - $K_b = K_w / K_a$

The ionic product of water, $K_{\rm w}$

• The ionisation of water is an **endothermic** process

$2H_2O(I) \Rightarrow H_3O^+ aq) + OH^-(aq)$

- In accordance with Le Châtelier's principle, an increase in temperature will result in the forward reaction being favoured
 - This causes an increase in the concentration of the hydrogen and hydroxide ions
 - This leads to the magnitude of K_w increasing
 - Therefore, the **pH will decrease**
- Increasing the temperature, decreases the pH of water (becomes more acidic)
- Decreasing the temperature, increases the pH of water (becomes more basic)

Page 7 of 13

Head to <u>www.savemyexams.com</u> for more awesome resources

Relationship between K_w and temperature

18.2.2 Acid & Base Problem Solving

Acid & Base Calculations

pН

- The acidity of an aqueous solution depends on the number of H_3O^+ ions in solution
- pH is defined as:

$pH = -log [H_3O^+]$

- Where $[H_3O^+]$ is the concentration of H_3O^+ ions in mol dm⁻³
- Similarly, the concentration of H⁺ of a solution can be calculated if the pH is known by rearranging the above equation to:

$[H_3O^+] = 10^{-pH}$

- The pH scale is a logarithmic scale with base 10
- This means that each value is 10 times the value below it
 - For example, pH 5 is 10 times more acidic than pH 6
- pH values are usually given to 2 decimal places

рОН

- The basicity of an aqueous solution depends on the number of hydroxide ions, OH⁻, in solution
- pOH is defined as:

$pOH = -log[OH^{-}]$

- Where [OH⁻] is the concentration of hydroxide ions in mol dm⁻³
- Similarly, the **concentration of OH**⁻ of a solution can be calculated if the pH is known by rearranging the above equation to:

[OH⁻] = 10^{-pOH}

• If you are given the concentration of a basic solution and need to find the pH, this can be done by:

$[H_3O^+] = K_w / [OH^-]$

■ Alternatively, if you are given the [OH⁻] and calculate the pOH, the pH can be found by:

pH = 14 - pOH

Page 9 of 13

Worked example

pH and H_3O^+ calculations

- 1. Find the pH when the hydrogen ion concentration is 1.60 x 10^{-4} mol dm⁻³
- 2. Find the hydrogen ion concentration when the pH is $3.10\,$

Answers

Answer 1:

The pH of the solution is:

- $pH = -log [H_3O^+]$
 - pH = -log 1.6 x 10⁻⁴
 - pH = **3.80**

Answer 2:

The hydrogen concentration can be calculated by rearranging the equation for pH

- pH = -log [H₃O⁺]
- [H₃O⁺] = 10^{-pH}
 - [H₃O⁺] = 10^{-3.10}
 - $[H_3O^+] = 7.94 \times 10^{-4} \mod dm^{-3}$

Worked example

pH calculations of a strong alkali

- 1. Calculate the pH of 0.15 mol dm^{-3} sodium hydroxide, NaOH
- 2. Calculate the hydroxide concentration of a solution of sodium hydroxide when the pH is 10.50

Answers

Sodium hydroxide is a strong base which ionises as follows:

 $NaOH(aq) \rightarrow Na^+(aq) + OH^-(aq)$

Answer 1:

The pH of the solution is:

• $[H^+] = K_w \div [OH^-]$

Page 10 of 13

Factor Save My Exams Head to <u>www.savemyexams.com</u> for more awesome resources

- $[H^+] = (1 \times 10^{-14}) \div 0.15 = 6.66 \times 10^{-14}$
- pH = -log[H⁺]
 - pH = -log 6.66 x 10⁻¹⁴ = 13.17

Answer 2

Step 1: Calculate hydrogen concentration by rearranging the equation for pH

- pH = -log[H⁺]
- [H⁺] = 10^{-pH}
 - [H⁺] = 10^{-10.50}
 - [H⁺] = 3.16 x 10⁻¹¹ mol dm⁻³

Step 2: Rearrange the ionic product of water to find the concentration of hydroxide ions

- K_w = [H⁺] [OH⁻]
- $[OH^{-}] = K_w \div [H^{+}]$

Step 3: Substitute the values into the expression to find the concentration of hydroxide ions

- Since K_w is 1×10^{-14} mol² dm⁻⁶
 - $[OH^{-}] = (1 \times 10^{-14}) \div (3.16 \times 10^{-11})$
 - $[OH^{-}] = 3.16 \times 10^{-4} \mod dm^{-3}$

$K_{\rm a}$, p $K_{\rm a}$, $K_{\rm b}$ and p $K_{\rm b}$

- In reactions of weak acids and bases, we cannot make the same assumptions as for the ionisation of strong acids and bases
- For a weak acid and its conjugate base, we can use the equation:

 $K_{\rm w} = K_{\rm a} K_{\rm b}$

By finding the -log of these, we can use:

$pK_w = pK_a + pK_b$

• Remember, to convert these terms you need to use:

 $pK_a = -\log K_a \qquad K_a = 10^{-pK_a}$ $pK_b = -\log K_b \qquad K_b = 10^{-pK_b}$

- The assumptions we must make when calculating values for K_a , pK_a , K_b and pK_b are:
 - The initial concentration of acid \approx the equilibrium concentration of acid
 - [A⁻] = [H₃O⁺]
 - There is negligible ionisation of the water, so $[H_3O^+]$ is not affected
 - The temperature is 25 °C

Page 11 of 13

SaveMyExams

Worked example

Calculate the acid dissociation constant, K_a , at 298 K for a 0.20 mol dm⁻³ solution of propanoic acid with a pH of 4.88.

Answer

Step 1: Calculate [H₃O⁺] using

- [H₃O⁺] = 10^{-pH}
 - $[H_3O^+] = 10^{-4.88}$
 - [H₃O⁺] = 1.3182 x 10⁻⁵

Step 2: Substitute values into Ka expression

- $K_a = [H_3O^+]^2 / [CH_3CH_2COOH]$
 - $K_a = (1.3182 \times 10^{-5})^2 / 0.2$
 - $K_a = 8.70 \times 10^{-10} \text{ mol dm}^{-3}$

Worked example

A 0.035 mol dm⁻³ sample of methylamine (CH₃NH₂) has pK_b value of 3.35 at 298 K. Calculate the pH of methylamine.

Answer

Step 1: Calculate the value for K_b using

- K_b = 10^{-pK_b}
 - K_b=10^{-3.35}
 - $K_b = 4.4668 \times 10^{-4}$

Step 2: Substitute values into K_b expression to calculate [OH⁻]

- $K_b = [OH^-]^2 / [CH_3NH_2]$
- $4.4668 \times 10^{-4} = [OH^{-}]^2 / 0.035$
- $[OH^{-}] = \sqrt{(4.4668 \times 10^{-4} \times 0.035)}$
- $[OH^{-}] = 3.9539 \times 10^{-3}$

Step 3: Calculate the pH

Page 12 of 13

- $[H^+] = K_w \div [OH^-]$
 - $[H^+] = (1 \times 10^{-14}) \div 3.9539 \times 10^{-3}$
 - [H⁺] = 2.5290 x 10⁻¹²
- pH = -log [H⁺]
 - pH = 2.5290 x 10⁻¹²
 - pH = 11.60 to 2 decimal places

OR

Step 3: Calculate pOH and therefore pH

- pOH = -log [OH⁻]
 - pOH = -log 3.9539 x 10⁻³
 - pOH = 2.4029
- pH = 14 pOH
 - pH = 14 2.4029
 - pH = **11.60 to 2 decimal places**