

3.8 Vector Equations of Lines

Contents

- **** 3.8.1 Vector Equations of Lines
- $*$ 3.8.2 Shortest Distances with Lines

3.8.1 Vector Equations of Lines

Equation of a Line in Vector Form

How do I find the vector equation of a line?

- The formula for finding the vector equation of a line is
	- $r = a + \lambda b$
		- Where r is the position vector of any point on the line
		- \blacksquare a is the **position vector** of a known point on the line
		- **b** is a direction (displacement) vector
		- \mathcal{A} is a scalar
	- **This is given in the formula booklet**
	- This equation can be used for vectors in both 2- and 3- dimensions
- This formula is similar to a regular equation of a straight line in the form $y = mx + c$ but with a vector to show both a point on the line and the direction (or gradient) of the line
	- In 2D the gradient can be found from the direction vector
	- \blacksquare In 3D a numerical value for the direction cannot be found, it is given as a vector
- As a could be the position vector of any point on the line and b could be any scalar multiple of the direction vector there are infinite vector equations for a single line
- Given any two points on a line with position vectors **a** and **b** the **displacement** vector can be written as $b - a$
	- So the formula $r = a + \lambda(b a)$ can be used to find the vector equation of the line
	- **This is not given in the formula booklet**

How do I determine whether a point lies on a line?

Given the equation of a line
$$
\mathbf{r} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} + \lambda \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}
$$
 the point **c** with position vector $\begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix}$ is on

the line if there exists a value of λ such that

$$
\begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} + \lambda \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}
$$

- This means that there exists a single value of λ that satisfies the three equations:
	- $c_1 = a_1 + \lambda b_1$ $c_2 = a_2 + \lambda b_2$

 \blacksquare

 $c_3 = a_3 + \lambda b_3$

Page 2 of 15

Head to [www.savemyexams.com](https://www.savemyexams.com/?utm_source=pdf)</u> for more awesome resources

SaveMyExams

- A GDC can be used to solve this system of linear equations for
	- The point only lies on the line if a single value of λ exists for all three equations
- Solve one of the equations first to find a value of λ that satisfies the first equation and then check that this value also satisfies the other two equations
- $\,$ If the value of λ does not satisfy all three equations, then the point ${\tt c}$ does not lie on the line

Q Examiner Tip

- Remember that the vector equation of a line can take many different forms
	- This means that the answer you derive might look different from the answer in a mark scheme
- You can choose whether to write your vector equations of lines using unit vectors or as column vectors
	- **Use the form that you prefer, however column vectors is generally easier to work with**

SaveMyExams

Head to [www.savemyexams.com](https://www.savemyexams.com/?utm_source=pdf)</u> for more awesome resources

Worked example

a) Find a vector equation of a straight line through the points with position vectors $a = 4i - 5k$ and **b** $= 3i - 3k$

> Use the position vectors to find the displacement vector between them. $\vec{OA} = \begin{pmatrix} 4 \\ 0 \\ -5 \end{pmatrix}$, $\vec{OB} = \begin{pmatrix} 3 \\ 0 \\ -3 \end{pmatrix}$ \Rightarrow $\vec{AB} = \begin{pmatrix} 3 \\ 0 \\ -3 \end{pmatrix} - \begin{pmatrix} 4 \\ 0 \\ -5 \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ 2 \end{pmatrix}$ Vector equation of a line $r = a + \lambda b$ position vector position vector
 v of point b or $r = \begin{pmatrix} 3 \\ 0 \\ -3 \end{pmatrix} + \lambda \begin{pmatrix} -1 \\ 0 \\ 2 \end{pmatrix}$ $+\lambda\begin{pmatrix} -1 \\ 0 \\ 2 \end{pmatrix}$ $r = \begin{pmatrix} 4 \\ 0 \\ -5 \end{pmatrix}$ K direction direction rector $r = \begin{pmatrix} 4 \\ 0 \\ -5 \end{pmatrix} + \lambda \begin{pmatrix} -1 \\ 9 \end{pmatrix}$

b) Determine whether the point C with coordinate (2, 0, -1) lies on this line.

Let $c = \begin{pmatrix} 2 \\ 0 \\ -1 \end{pmatrix}$, then check to see if there exists a value of λ such that $\begin{pmatrix} 2 \\ 0 \\ -1 \end{pmatrix} = \begin{pmatrix} 4 \\ 0 \\ -5 \end{pmatrix} + \lambda \begin{pmatrix} -1 \\ 0 \\ 2 \end{pmatrix}$ From the $\dddot{1}$ component: $4 - \lambda = 2$ 1 From the "i component: $0 + 0\lambda = 0$ (\vee) Works for all λ From the k component: $-5+2\lambda = -1$ 3 $\circled{1} \Rightarrow \lambda = 2$ sub into $\circled{3} \Rightarrow -5 + (2 \times 2) = -5 + 4 = -1$ Point C Lies on the Line

Page 4 of 15

Equation of a Line in Parametric Form

How do I find the vector equation of a line in parametric form?

 \blacksquare By considering the three separate components of a vector in the x, y and z directions it is possible to write the vector equation of a line as three separate equations

\n- Letting
$$
\mathbf{r} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}
$$
 then $\mathbf{r} = \mathbf{a} + \lambda \mathbf{b}$ becomes
\n- $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x_0 \\ y_0 \\ z_0 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ m \\ n \end{pmatrix}$
\n- Where $\begin{pmatrix} x_0 \\ x_0 \\ y_0 \\ z_0 \end{pmatrix}$ is a position vector and $\begin{pmatrix} 1 \\ m \\ n \end{pmatrix}$ is a direction vector z_0 .
\n

This vector equation can then be split into its three separate component forms:

$$
x = x_0 + \lambda l
$$

$$
y = y_0 + \lambda m
$$

$$
z = z_0 + \lambda n
$$

F These are given in the formula booklet

Angle Between Two Lines

How do we find the angle between two lines?

- The angle between two lines is equal to the angle between their direction vectors It can be found using the scalar product of their direction vectors
- Given two lines in the form \bm{r} $=$ $\bm{a}_1 + \lambda \bm{b}_1^{}$ and \bm{r} $=$ $\bm{a}_2^{} + \lambda \bm{b}_2^{}$ use the formula

$$
\theta = \cos^{-1}\left(\frac{\boldsymbol{b}_1 \cdot \boldsymbol{b}_2}{\left|\boldsymbol{b}_1\right| \left|\boldsymbol{b}_2\right|}\right)
$$

- If you are given the equations of the lines in a different form or two points on a line you will need to find their direction vectors first
- To find the angle ABC the vectors BA and BC would be used, both starting from the point B
- The intersection of two lines will always create two angles, an acute one and an obtuse one
	- A positive scalar product will result in the acute angle and a negative scalar product will result in the obtuse angle
		- Using the absolute value of the scalar product will always result in the acute angle

Q Examiner Tip

- **In your exam read the question carefully to see if you need to find the acute or obtuse angle**
	- When revising, get into the practice of double checking at the end of a question whether your angle is acute or obtuse and whether this fits the question

Worked example

Find the acute angle, in radians between the two lines defined by the equations:

 $\begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}$ $\begin{picture}(1277766,111770,1117$ $\begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}$ $\begin{picture}(1277766,111770,1117$ $\begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}$ $\begin{picture}(1277766,111770,1117$ $\begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}$ $\begin{picture}(1277766,111770,1117$ 2 1 1 −3 l_1 : $a =$ 0 $+ \lambda$ −4 and l_2 : \boldsymbol{b} = −4 $+\mu$ 2 ⎝ 3 ⎠ ⎝ −3 ⎠ ⎝ 3 ⎠ ⎝ 5 ⎠ STEP 1: Find the scalar product of the direction vectors: $\begin{pmatrix} 1 \\ -4 \\ -3 \end{pmatrix} \cdot \begin{pmatrix} -3 \\ 2 \\ 5 \end{pmatrix} = (1x-3) + (-4x2) + (-3x5) = -3 + (-8) + (-15) = -26$
negative, so the angle will be the obtuse angle. STEP 2: Find the magnitudes of the direction vectors: $\sqrt{(1)^2 + (-4)^2 + (-3)^2} = \sqrt{26}$ $\sqrt{(-3)^2 + (2)^2 + (5)^2} = \sqrt{38}$ STEP 3: Find the angle: $cos\theta = \frac{|-26|}{\sqrt{26}\sqrt{38}}$ Using the absolute
Value will result $\theta = \cos^{-1}\left(\frac{26}{\sqrt{26}\sqrt{38}}\right)$ θ = 0.597 radians (3sf)

3.8.2 Shortest Distances with Lines

Shortest Distance Between a Point and a Line

How do I find the shortest distance from a point to a line?

- The shortest distance from any point to a line will always be the **perpendicular** distance
	- Given a line l with equation $\mathbf{r} = \mathbf{a} + \lambda \mathbf{b}$ and a point P not on l
	- The scalar product of the direction vector, b, and the vector in the direction of the shortest distance will be zero
- The shortest distance can be found using the following steps:
	- \blacksquare STEP 1: Let the vector equation of the line be r and the point not on the line be P, then the point on the line closest to P will be the point F
		- \blacksquare The point F is sometimes called the foot of the perpendicular
	- \blacksquare STEP 2: Sketch a diagram showing the line l and the points P and F \longrightarrow
		- The vector FP will be **perpendicular** to the line l
	- STEP 3: Use the equation of the line to find the position vector of the point F in terms of λ \longrightarrow
	- STEP 4: Use this to find the displacement vector FP in terms of λ
	- STEP 5: The scalar product of the direction vector of the line l and the displacement vector \rightarrow FP will be zero
		- Form an equation \rightarrow $FP \cdot \mathbf{b} \hspace*{-.3mm}=\hspace*{-.3mm} 0$ and solve to find λ
	- STEP 6: Substitute λ into \rightarrow FP and find the magnitude $\overline{\mathsf{I}}$ $\overline{}$ \rightarrow FP
	- The shortest distance from the point to the line will be the magnitude of \rightarrow FP
- Note that the shortest distance between the point and the line is sometimes referred to as the length of the perpendicular

Your notes

 $\overline{\mathsf{I}}$

 \rightarrow $AP \times b$ $\overline{\mathsf{I}}$ \overline{b}

 $\overline{\mathsf{I}}$

How do we use the vector product to find the shortest distance from a point to a line?

- The vector product can be used to find the shortest distance from any point to a line on a 2dimensional plane
- Given a point, P, and a line $r = a + \lambda b$

- **Where A is a point on the line**
- This is not given in the formula booklet

Q Examiner Tip

Column vectors can be easier and clearer to work with when dealing with scalar products.

Worked example

Point A has coordinates (1, 2, 0) and the line *I* has equation
$$
\mathbf{r} = \begin{pmatrix} 2 \\ 0 \\ 6 \end{pmatrix} + \lambda \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}
$$
.

Point *B* lies on the I such that $[$ $\left\{AB\right\}$ is perpendicular to l .

Find the shortest distance from A to the line I .

B is on L so can be written in terms of 2: $\vec{OB} = \begin{pmatrix} 2 \\ 0 \\ 6 \end{pmatrix} + \lambda \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 2 \\ \lambda \\ 6+2\lambda \end{pmatrix}$

Find \vec{AB} using $\vec{AB} = \vec{OB} - \vec{OA}$ $\overrightarrow{AB} = \begin{pmatrix} 2 \\ \lambda \\ 6 + 2\lambda \end{pmatrix} - \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ \lambda - 2 \\ 6 + 2\lambda \end{pmatrix}$ \overrightarrow{AB} is perpendicular to $\lambda: \overrightarrow{AB} \cdot \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} = 0$ $\begin{pmatrix} 1 \\ 2 & -2 \\ 6 & +2 & 2 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} = 0$ $\lambda - 2 + 2(6 + 2\lambda) - 0$ $5\lambda + 10 = 0$ $\lambda = -2$

Substitute back into \overrightarrow{AB} and find the magnitude:

$$
\overrightarrow{AB} = \begin{pmatrix} 1 \\ -2 - 2 \\ 6 + 2(-2) \end{pmatrix} = \begin{pmatrix} 1 \\ -4 \\ 2 \end{pmatrix}
$$

$$
|\overrightarrow{AB}| = \sqrt{1^2 + (-4)^2 + 2^2} = \sqrt{2}
$$

Shortest distance $=\sqrt{2I}$ units

Your notes

Shortest Distance Between Two Lines

How do we find the shortest distance between two parallel lines?

- **Two parallel** lines will never intersect
- The shortest distance between two parallel lines will be the perpendicular distance between them
	- Given a line I_1 with equation $\mathbf{r} = \mathbf{a}_1 + \lambda \mathbf{d}_1$ and a line I_2 with equation $\mathbf{r} = \mathbf{a}_2 + \mu \mathbf{d}_2$ then the shortest distance between them can be found using the following steps:
		- STEP 1: Find the vector between $\boldsymbol{a}^{}_{1}$ and a general coordinate from $I^{}_{2}$ in terms of μ
		- STEP 2: Set the scalar product of the vector found in STEP 1 and the direction vector $\mathbf{d}_1^{}$ equal to zero
			- Remember the direction vectors $\mathbf{d}_1^{}$ and $\mathbf{d}_2^{}$ are scalar multiples of each other and so either can be used here
		- STEP 3: Form and solve an equation to find the value of *μ*
		- STEP 4: Substitute the value of μ back into the equation for $I^{}_2$ to find the coordinate on $I^{}_2$ closest
			- to l_1
		- STEP 5: Find the distance between $\bm{a}_1^{}$ and the coordinate found in STEP 4 $\,$
- Alternatively, the formula $\overline{\mathsf{I}}$ $\overrightarrow{AB} \times d$ $\frac{AB\times d|}{|d|}$ can be used
	- Where \longrightarrow AB is the vector connecting the two given coordinates $\bm{a}_1^{}$ and $\bm{a}_2^{}$
	- **d** is the simplified vector in the direction of $\mathbf{d}_1^{}$ and $\mathbf{d}_2^{}$
	- This is not given in the formula booklet

How do we find the shortest distance from a given point on a line to another line?

- The shortest distance from any point on a line to another line will be the **perpendicular** distance from the point to the line
- If the angle between the two lines is known or can be found then right-angled trigonometry can be used to find the perpendicular distance
 $I \longrightarrow I$

The formula $|\overrightarrow{AB} \times d|$

 $\frac{AB\times d}{|d|}$ given above is derived using this method and can be used

Alternatively, the equation of the line can be used to find a general coordinate and the steps above can be followed to find the shortest distance

How do we find the shortest distance between two skew lines?

- Two **skew** lines are not parallel but will never intersect
- The shortest distance between two skew lines will be perpendicular to both of the lines
	- This will be at the point where the two lines pass each other with the perpendicular distance where the point of intersection would be

Page 12 of 15

Head to [www.savemyexams.com](https://www.savemyexams.com/?utm_source=pdf) for more awesome resources

SaveMyExams

- The vector product of the two direction vectors can be used to find a vector in the direction of the shortest distance
- The shortest distance will be a vector parallel to the vector product
- To find the shortest distance between two skew lines with equations $\mathbf{r} = \mathbf{a}_1 + \lambda \mathbf{d}_1$ and $\mathbf{r} = \mathbf{a}_2 + \mu \mathbf{d}_2$,
	- STEP 1: Find the vector product of the direction vectors $\,{\bf d}_1^{}$ and $\,{\bf d}_2^{}$

$$
\bullet \quad \mathbf{d} = \mathbf{d}_1 \times \mathbf{d}_2
$$

STEP 2: Find the vector in the direction of the line between the two general points on $I^{}_{1}$ and $I^{}_{2}$ in terms of λ and μ

$$
\overrightarrow{AB} = \mathbf{b} - \mathbf{a}
$$

STEP 3: Set the two vectors parallel to each other

$$
\mathbf{d} = k \overrightarrow{AB}
$$

 $\; \bar{ } \; \;$ STEP 4: Set up and solve a system of linear equations in the three unknowns, $k, \, \lambda$ and μ

Q Examiner Tip

- Exam questions will often ask for the shortest, or minimum, distance within vector questions
- **If you're unsure start by sketching a quick diagram**
- Sometimes calculus can be used, however vector methods are usually required

SaveMyExams

Head to [www.savemyexams.com](https://www.savemyexams.com/?utm_source=pdf) for more awesome resources

Find the vector product of the direction vectors.

$$
\begin{pmatrix} 2 \ -3 \ 4 \end{pmatrix} \times \begin{pmatrix} -1 \ 2 \ 1 \end{pmatrix} = \begin{pmatrix} (-3)(1) - (4)(2) \\ (4)(-1) - (2)(1) \\ (2)(2) - (-3)(-1) \end{pmatrix} = \begin{pmatrix} -11 \\ -6 \\ 1 \end{pmatrix}
$$

Find the vector in the direction of the line between the general coordinates.

$$
\overrightarrow{AB} = \begin{pmatrix} -5 - \mu \\ 4 + 2\mu \\ -8 + \mu \end{pmatrix} - \begin{pmatrix} 6 + 2\lambda \\ -4 - 3\lambda \\ 3 + 4\lambda \end{pmatrix} = \begin{pmatrix} -11 - \mu - 2\lambda \\ 8 + 2\mu + 3\lambda \\ -11 + \mu - 4\lambda \end{pmatrix}
$$

A point on L₂ A point on L₁

$$
\begin{pmatrix}\n-||-\mu - 2\lambda \\
8+2\mu + 3\lambda \\
-||+\mu - 4\lambda\n\end{pmatrix} = k \begin{pmatrix}\n-|| \\
-6 \\
| \\
-1\n\end{pmatrix} \quad \overrightarrow{AB} \text{ is parallel to } \begin{pmatrix}\n-|| \\
-6 \\
-6 \\
| \\
1\n\end{pmatrix}
$$

Set up and solve a system of equations.

$$
11k - 2\lambda - \mu = 11
$$

\n $6k + 3\lambda + 2\mu = -8$
\n $\mu - 4\lambda - k = 11$
\nSolve using GDC:
\n $k = \frac{31}{79}$ $\lambda = -\frac{238}{79}$ $\mu = -\frac{52}{79}$

Substitute back into the expression for \overrightarrow{AB} and find the magnitude: $|\vec{AB}| = \sqrt{-11 - \left(-\frac{52}{79}\right) - 2\left(-\frac{238}{79}\right)}$
 $8 + 2\left(-\frac{52}{79}\right) + 3\left(-\frac{238}{79}\right) = \left(-\frac{341}{79}\right)$
 $-11 + \left(-\frac{52}{79}\right) - 4\left(-\frac{238}{79}\right)$
 $\left(-\frac{186}{79}\right) = \sqrt{\left(-\frac{341}{79}\right)^2 + \left(\frac{186}{79}\right)^2 + \left(\frac{31}{79}\right)^2}$

Shortest distance = 4.93 units (3s.f.)

