

## 2.6 Further Modelling with Functions

## Contents

- ★ 2.6.1 Properties of Further Graphs
- ✤ 2.6.2 Natural Logarithmic Models
- ★ 2.6.3 Logistic Models
- ★ 2.6.4 Piecewise Models



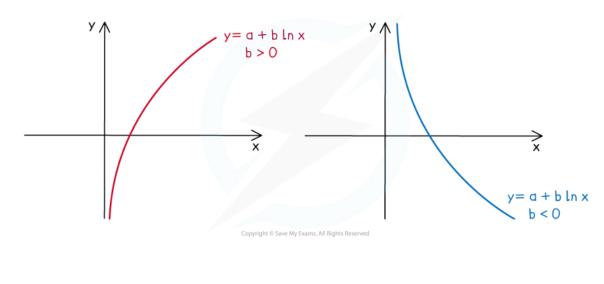
F Save My Exams Head to www.savemyexams.com for more awesome resources

## 2.6.1 Properties of Further Graphs

## Logarithmic Functions & Graphs

#### What are the key features of logarithmic graphs?

- A logarithmic function is of the form  $f(x) = a + b \ln x$ , x > 0
- Remember the natural logarithmic function  $\ln x \equiv \log_{e}(x)$ 
  - This is the inverse of  $f(x) = e^x$ 
    - $\ln(e^x) = x$  and  $e^{\ln x} = x$
  - The graphs will always pass through the point (1, a)
  - The graphs **do not have a y-intercept** 
    - The graphs have a **vertical asymptote** at the *y*-axis:
  - The graphs have **one root** at  $\left(e^{-\frac{a}{b}}, 0\right)$ 
    - This can be found using your GDC
  - The graphs **do not have any minimum or maximum points**
  - The value of b determines whether the graph is increasing or decreasing
    - If b is positive then the graph is increasing
    - If b is negative then the graph is decreasing







## **Logistic Functions & Graphs**

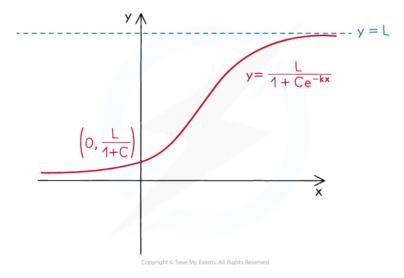
#### What are the key features of logistic graphs?

• A logistic function is of the form f(x)

orm 
$$f(x) = \frac{1}{1 + Ce^{-kx}}$$

L

- *L*, C & *k* are positive constants
- Its domain is the set of all real values
- Its range is the set of real positive values less than L
- The y-intercept is at the point  $\left(0, \frac{L}{1+C}\right)$
- There are no roots
- There is a **horizontal asymptote** at *y* = *L* 
  - This is called the carrying capacity
    - This is the upper limit of the function
    - For example: it could represent the limit of a population size
- There is a **horizontal asymptote** at y = 0
- The graph is always increasing





#### Page 3 of 12

#### F Save My Exams Head to www.savemyexams.com for more awesome resources

## 2.6.2 Natural Logarithmic Models

## Natural Logarithmic Models

#### What are the parameters of natural logarithmic models?

- A natural logarithmic model is of the form  $f(x) = a + b \ln x$
- The *a* represents the value of the function when *x* = 1
- The b determines the rate of change of the function
  - A bigger absolute value of b leads to a faster rate of change

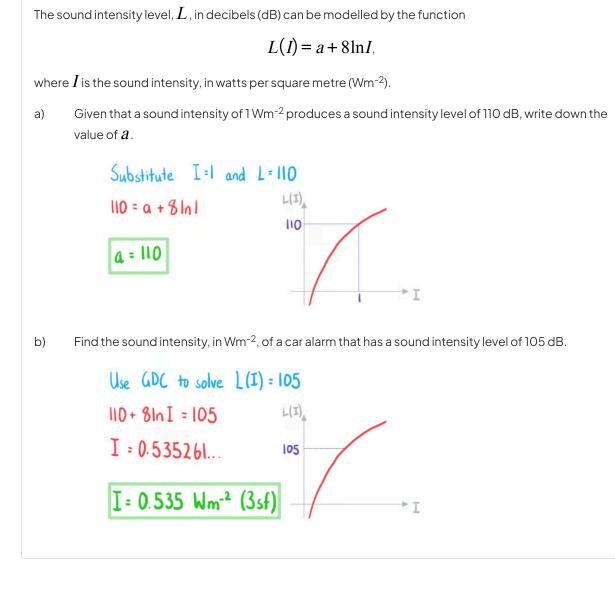
#### What can be modelled as a natural logarithmic model?

- A **natural logarithmic model** can be used when the variable increases rapidly for a period followed by a much slower rate of increase with no limiting value
  - *M(I)* is the magnitude of an earthquake with an intensity of *I*
  - *d(l)* is the decibels measured of a noise with an intensity of *l*

#### What are possible limitations a natural logarithmic model?

- A natural logarithmic graph is unbounded
  - However in real-life the variable might have a limiting value





Worked example



## 2.6.3 Logistic Models

## **Logistic Models**

#### What are the parameters of logistic models?

• A logistic model is of the form 
$$f(x) = \frac{L}{1 + Ce^{-kx}}$$

- The L represents the limiting capacity
  - This is the value that the model tends to as x gets large
- The C (along with the L) helps to determine the initial value of the model
  - The initial value is given by  $\frac{L}{1+C}$
  - Once *L* has been determined you can then determine C
- The k determines the rate of increase of the model

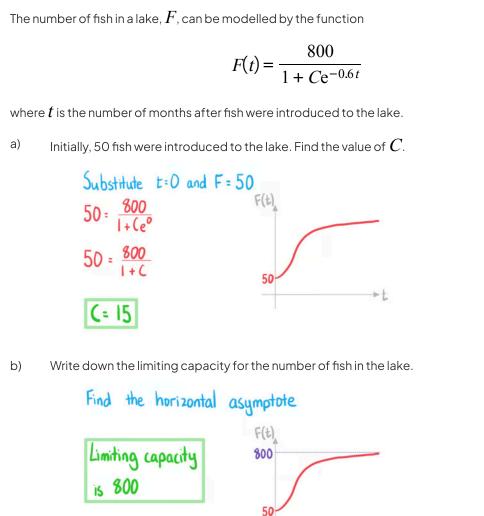
#### What can be modelled using a logistic model?

- A logistic model can be used when the variable initially increases exponentially and then tends towards a limit
  - *H*(*t*) is the height of a giraffe *t* weeks after birth
  - P(t) is the number of bacteria on an apple t seconds after removing from protective packaging
  - P(t) is the population of rabbits in a woodlands area t weeks after releasing an initial amount into the area

#### What are possible limitations of a logistic model?

- A logistic graph is **bounded** by the limit L
  - However in real-life the variable might be unbounded
    - For example: the cumulative total number of births in a town over time
- A logistic graph is always increasing
  - However in real-life there could be periods where the variable decreased or fluctuates



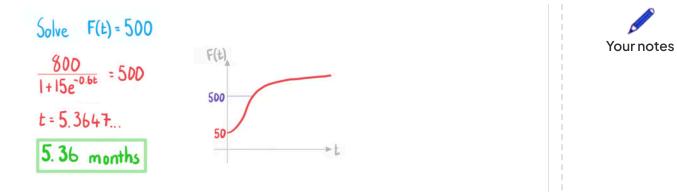


Worked example

c) Calculate the number of months it takes until there are 500 fish in the lake.

►t





## 2.6.4 Piecewise Models

### **Linear Piecewise Models**

#### What are the parameters of a piecewise linear model?

- A piecewise linear model is made up of multiple linear models  $f_i(x) = m_i x + c_i$
- For each linear model there will be
  - The rate of change for that interval m<sub>i</sub>
  - The value if the independent variable was not present c<sub>i</sub>

#### What can be modelled as a piecewise linear model?

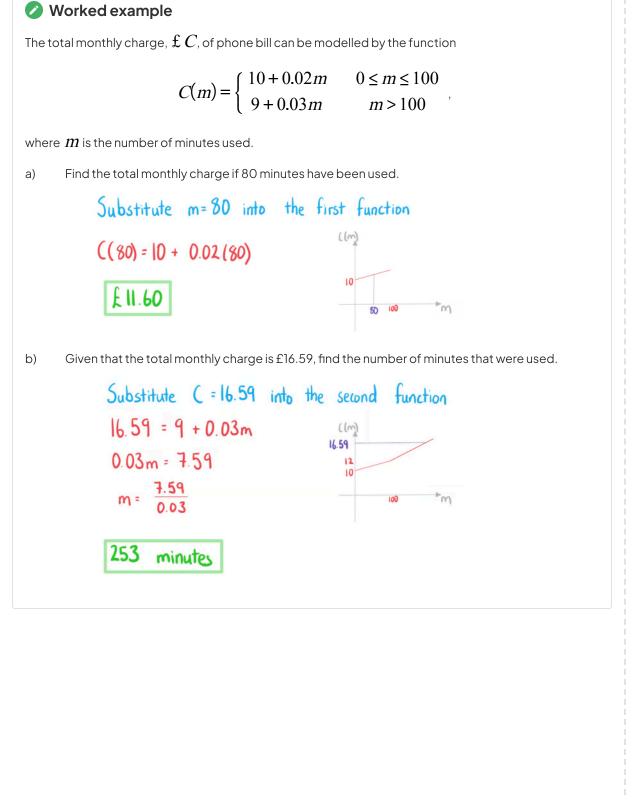
- Piecewise linear models can be used when the rate of change of a function changes for different intervals
  - These commonly apply when there are different tariffs or levels of charges
- Anything with a constant rate of change for set intervals
  - C(d) is the taxi charge for a journey of d km
    - The charge might double after midnight
  - R(d) is the rental fee for a car used for d days
    - The daily fee might triple if the car is rented over bank holidays
  - s(t) is the speed of a car travelling for t seconds with constant acceleration
    - The car might reach a maximum speed

#### What are possible limitations of a piecewise linear model?

- Piecewise linear models have a constant rate of change (represented by a straight line) in each interval
  - In real-life this might not be the case
  - The data in some intervals might have a continuously variable rate of change (represented by a curve) rather than a constant rate
  - Or the transition from one constant rate of change to another may be gradual-i.e. a curve rather than a sudden change in gradient

### 😧 Examiner Tip

• Make sure that you know how to plot a piecewise model on your GDC





SaveMyExams

## Non-Linear Piecewise Models

#### What are the parameters of non-linear piecewise models?

- A non-linear piecewise model is made up of multiple functions f(x)
  - Each function will be defined for a range of values of x
- The individual functions can contain any function
  - For example: quadratic, cubic, exponential, etc
- When graphed the individual functions should join to make a continuous graph
  - This fact can be used to find unknown parameters

• If 
$$f(x) = \begin{cases} f_1(x) & a \le x < b \\ f_2(x) & b \le x < c \end{cases}$$
 then  $f_1(b) = f_2(b)$ 

#### What can be modelled as a non-linear piecewise model?

- Piecewise models can be used when different functions are needed to represent the output for different intervals of the variable
  - S(x) is the standardised score on a test with x raw marks
    - For small values of x there might be a quadratic model
    - For large values of x there might be a linear model
  - *H*(*t*) is the height of water in a bathtub with after *t* minutes
    - Initially a cubic model might be a appropriate if the bottom of the bathtub is curved
    - Then a linear model might be a appropriate if the sides of top of the bathtub has the shape of a prism

#### What are possible limitations a non-linear piecewise model?

- Piecewise models can be used to model real-life accurately
- Piecewise models can be difficult to analyse or apply mathematical techniques to

## 😧 Examiner Tip

- Read and re-read the question carefully, try to get involved in the context of the question!
- Pay particular attention to the domain of each section, if it is not given think carefully about any restrictions there may be as a result of the context of the question
- If sketching a piecewise function, make sure to include the coordinates of all key points including the point at which two sections of the piecewise model meet



#### Page 11 of 12

Worked example

