

5.1 Differentiation

Contents

- $*$ 5.1.1 Introduction to Differentiation
- $*$ 5.1.2 Applications of Differentiation
- ***** 5.1.3 Modelling with Differentiation

SaveMyExams

5.1.1 Introduction to Differentiation

Introduction to Derivatives

Before introducing a derivative, an understanding of a limit is helpful

What is a limit?

- The limit of a function is the value a function (of X) approaches as X approaches a particular value from either side
	- Limits are of interest when the function is undefined at a particular value
		- For example, the function $f(x) = \frac{x^4 1}{x-1}$ $\overline{X-1}$ will approach a limit as X approaches 1 from both

below and above but is undefined at $x = 1$ as this would involve dividing by zero

What might I be asked about limits?

- You may be asked to predict or estimate limits from a table of function values or from the graph of $y = f(x)$
- You may be asked to use your GDC to plot the graph and use values from it to estimate a limit

What is a derivative?

- **Calculus** is about rates of change
	- the way a car's position on a road changes is its speed
	- the way the car's speed changes is its acceleration
- The gradient (rate of change) of a (non-linear) function varies with X
- \blacksquare The derivative of a function is a function that relates the gradient to the value of X
- It is also called the gradient function

How are limits and derivatives linked?

- \bullet Consider the point P on the graph of $y=f(x)$ as shown below
	- $\left[PQ_{\overrightarrow{i}}\right]$ is a series of chords

Page 2 of 25

SaveMyExams Head to [www.savemyexams.com](https://www.savemyexams.com/?utm_source=pdf)</u> for more awesome resources

Your notes

- The gradient of the function $f(x)$ at the point P is equal to the gradient of the tangent at point P
- The **gradient** of the **tangent** at point P is the **limit** of the **gradient** of the chords $\left[PQ_{\overline{I}} \right]$ as point Q 'slides' down the curve and gets ever closer to point P
- \blacksquare The gradient of the function changes as X changes
- The derivative is the function that calculates the gradient from the value X

What is the notation for derivatives?

For the function $y = f(x)$ the **derivative**, with respect to x , would be written as

$$
\frac{\mathrm{d}y}{\mathrm{d}x} = f'(x)
$$

Different variables may be used

e.g. If
$$
V = f(s)
$$
 then $\frac{dV}{ds} = f'(s)$

Page 4 of 25

Differentiating Powers of x

What is differentiation?

Differentiation is the process of finding an expression of the derivative (gradient function) from the expression of a function

How do I differentiate powers of x?

- Powers of X are differentiated according to the following formula:
	- If $f(x) = x^n$ then $f'(x) = nx^{n-1}$ where $n \in \mathbb{Z}$
	- This is given in the **formula booklet**
- If the power of X is multiplied by a constant then the derivative is also multiplied by that constant
	- If $f(x)=ax^n$ then $f'(x)=anx^{n-1}$ where $n\in \mathbb{Z}$ and a is a constant
- The **alternative notation** (to $f'(x)$) is to use d^y dx

• If
$$
y = ax^n
$$
 then $\frac{dy}{dx} = anx^{n-1}$
\n• e.g. If $y = -4x^5$ then $\frac{dy}{dx} = -4 \times 5x^{5-1} = -20x^4$

- Don't forget these two special cases:
	- If $f(x) = ax$ then $f'(x) = a$
		- e.g. If $y=6x$ then d^y dx =6

$$
\text{If } f(x) = a \text{ then } f'(x) = 0
$$

ï

$$
\bullet \quad \text{e.g. If } y = 5 \text{ then } \frac{dy}{dx} = 0
$$

 \blacksquare These allow you to differentiate linear terms in X and constants

Functions involving fractions with denominators in terms of X will need to be rewritten as negative **powers** of X first

If
$$
f(x) = \frac{4}{x}
$$
 then rewrite as $f(x) = 4x^{-1}$ and differentiate

How do I differentiate sums and differences of powers of x?

- The formulae for differentiating powers of X apply to all integer powers so it is possible to differentiate any expression that is a sum or difference of powers of X
	- e.g. If $f(x) = 5x^4 + 2x^3 3x + 4$ then $f'(x) = 5 \times 4x^{4-1} + 2 \times 3x^{3-1} - 3 + 0$

Page 5 of 25

 $f'(x) = 20x^3 + 6x^2 - 3$

- Products and quotients cannot be differentiated in this way so would need expanding/simplifying first
	- e.g. If $f(x)=(2x-3)(x^2-4)$ then expand to $f(x)\!=\!2x^3-3x^2-8x+12$ which is a

sum/difference of powers of X and can be differentiated

Q Examiner Tip

- A common mistake is not simplifying expressions before differentiating
	- The derivative of $(x^2+3)(x^3-2x+1)$ can **not** be found by multiplying the derivatives of (x^2+3) and (x^3-2x+1)

Worked example

The function $f(x)$ is given by

$$
f(x) = x^3 - 2x^2 + 3 - \frac{4}{x^3}
$$

Find the derivative of $f(x)$.

Rewrite
$$
f(x)
$$
 so every term is a power of x
\n $f(x) = x^3 - 2x^2 + 3 - 4x^{-3}$
\nDifferentiate by applying the formula (3 is a special case)
\n $f'(x) = 3x^2 - 4x + 12x^{-4}$
\n $9x^{-1}$
\n $9x^{-1}$
\n $12x^{-1}$
\n $12x^{-1}$

Page 6 of 25

5.1.2 Applications of Differentiation

Finding Gradients

How do I find the gradient of a curve at a point?

- The gradient of a curve at a point is the gradient of the tangent to the curve at that point
- Find the gradient of a curve at a point by substituting the value of \boldsymbol{X} at that point into the curve's derivative function
- For example, if $f(x) = x^2 + 3x 4$
	- then $f'(x) = 2x + 3$
	- and the gradient of $y = f(x)$ when $x = 1$ is $f'(1) = 2(1) + 3 = 5$
	- and the gradient of $y = f(x)$ when $x = -2$ is $f'(-2) = 2(-2) + 3 = -1$
- Although your GDC won't find a derivative function for you, it is possible to use your GDC to evaluate

the derivative of a function at a point, using d $\frac{d}{dx}(\Box)_{x=}$

Worked example

A function is defined by $f(x) = x^3 + 6x^2 + 5x - 12$.

(a) Find $f'(x)$.

Find
$$
\int'(\alpha)
$$
 by differentiating
 $f'(\alpha) = 3\alpha^2 + 2 \times 6\alpha^1 + 5\alpha^0$

 $f'(x) = 3x^2 + 12x + 5$

(b) Hence show that the gradient of $y = f(x)$ when $x = 1$ is 20.

Substitute
$$
x = 1
$$
 into $f'(x)$
\n $f'(1) = 3(1)^2 + 12(1) + 5$
\n $= 3 + 12 + 5$
\n $f'(1) = 20$

(c) Find the gradient of $y = f(x)$ when $x = -2.5$.

 $f'(-2.5) = -6.25$

Page 9 of 25

Increasing & Decreasing Functions

What are increasing and decreasing functions?

- A function, $f(x)$, is **increasing if** $f'(x) > 0$
	- This means the value of the function ('output') increases as x increases
- A function, $f(x)$, is **decreasing if** $f'(x) < 0$
	- This means the value of the function ('output') decreases as x increases
- A function, $f(x)$, is **stationary** if $f'(x) = 0$

How do I find where functions are increasing, decreasing or stationary?

- To identify the intervals on which a function is increasing or decreasing STEP 1 Find the derivative $f'(x)$ STEP 2 Solve the inequalities $f'(x) > 0$ (for increasing intervals) and/or $f'(x) < 0$ (for decreasing intervals)
- Most functions are a combination of increasing, decreasing and stationary
	- \blacksquare a range of values of x (interval) is given where a function satisfies each condition
	- e.g. The function $f(x) = x^2$ has **derivative** $f'(x) = 2x$ so

Page 10 of 25

- **f** $f(x)$ is decreasing for $x < 0$
- **f** $f(x)$ is stationary at $x = 0$
- **f** $f(x)$ is increasing for $x > 0$

Worked example

a) Determine whether $f(x)$ is increasing or decreasing at the points where $x = 0$ and $x = 3$.

```
Differentiate
  f(x) = 2x-1At x = 0, \int_1^1 (0) = 2x - 1 = -1 < 0 : decreasing
  At x=3, \frac{1}{3} = 2x3-1=5>0 : increasing
   \therefore At x=0, f(x) is decreasing
      At x=3, f(x) is increasing
```
b) Find the values of X for which $f(x)$ is an increasing function.

Tangents & Normals

What is a tangent?

- At any point on the graph of a (non-linear) function, the tangent is the straight line that touches the graph at a point without crossing through it
- **Its gradient** is given by the derivative function

How do I find the equation of a tangent?

- \blacksquare To find the equation of a straight line, a point and the gradient are needed
- The **gradient**, m , of the **tangent** to the function $y = f(x)$ at (x_1, y_1) is $\boldsymbol{f'(x_1)}$ \blacksquare
- Therefore find the **equation** of the **tangent** to the function $y = f(x)$ at the point (x_1, y_1) by

substituting the gradient,
$$
f'(x_1)
$$
, and point (x_1, y_1) into $y - y_1 = m(x - x_1)$, giving:
\n• $y - y_1 = f'(x_1)(x - x_1)$

 \blacksquare (You could also substitute into $y = mx + c$ but it is usually quicker to substitute into $y - y_1 = m(x - x_1)$

What is a normal?

At any point on the graph of a (non-linear) function, the **normal** is the straight line that passes through that point and is **perpendicular** to the tangent

Page 12 of 25

SaveMyExams Head to [www.savemyexams.com](https://www.savemyexams.com/?utm_source=pdf)</u> for more awesome resources

How do I find the equation of a normal?

- The **gradient** of the **normal** to the function $y = f(x)$ at (x_1, y_1) is $\frac{1}{f'(x)}$ $f'(x)$
- Therefore find the **equation** of the **normal** to the function $y = f(x)$ at the point (x_1, y_1) by using

$$
y - y_1 = \frac{-1}{f'(x_1)}(x - x_1)
$$

Q Examiner Tip

- You are not given the formula for the equation of a tangent or the equation of a normal
- But both can be derived from the equations of a straight line which are given in the formula booklet

1

Your notes

Worked example

The function $\mathrm{f}(x)$ is defined by

$$
f(x) = 2x^4 + \frac{3}{x^2}
$$
 $x \neq 0$

a) Find an equation for the tangent to the curve $y = f(x)$ at the point where $x = 1$, giving your answer in the form $y = mx + c$.

First find f'(x) by differentiating
\n
$$
f(x) = 2x^{4} + 3x^{-2}
$$
 Rewrite as powers of x
\nf'(x) = $8x^{3} - 6x^{-3}$
\nFor a tangent, "y-y₁ = f(0)(x-x₁)"
\nAt x=1, y= 2(1)⁴ + $\frac{3}{10^{3}}$ = 5
\nf'(1) = 8(1)³ - $\frac{6}{10^{3}}$ = 2
\n
\n
\n \therefore y-5= 2(x-1)
\n
\nTangent at x=1, is y= 2x+3

b) Find an equation for the normal at the point where $x=1$, giving your answer in the form $ax + by + d = 0$, where a, b and d are integers.

For a normal, "y-y. =
$$
\frac{-1}{f'(a)}
$$

\nUsing results from part e:
\n $y-5 = \frac{-1}{2}(x-1)$
\n $y=-\frac{1}{2}x+\frac{11}{2}$
\n $2y=-x+11$
\n \therefore Equation of normal is x+2y-11=0

$$
\bigotimes_{\text{Your notes}}
$$

Head to [www.savemyexams.com](https://www.savemyexams.com/?utm_source=pdf) for more awesome resources

SaveMyExams

Local Minimum & Maximum Points

What are local minimum and maximum points?

- Local minimum and maximum points are two types of stationary point
	- The gradient function (derivative) at such points equals zero
		- i.e. $f'(x) = 0$
- A local minimum point, $(x, f(x))$ will be the lowest value of $f(x)$ in the local vicinity of the value of x
	- The function may reach a lower value further afield
- \bullet Similarly, a local maximum point, $(x,\,f(x))$ will be the greatest value of $\,f(x)$ in the local vicinity of the value of X
	- The function may reach a greater value further afield
- \blacksquare The graphs of many functions tend to infinity for large values of X (and/or minus infinity for large negative values of X)
- The nature of a stationary point refers to whether it is a local minimum or local maximum point

How do I find the coordinates and nature of stationary points?

The instructions below describe how to find local minimum and maximum points using a GDC on the graph of the function $y = f(x)$.

STEP 1

Plot the graph of $y = f(x)$

Sketch the graph as part of the solution

STEP 2

Use the options from the graphing screen to "solve for minimum" The GDC will display the X and Y coordinates of the first minimum point Scroll onwards to see there are anymore minimum points Note down the coordinates and the type of stationary point

STEP 3

Repeat STEP 2 but use "solve for maximum" on your GDC

- In STEP 2 the nature of the stationary point should be easy to tell from the graph
	- a local minimum changes the function from decreasing to increasing the gradient changes from negative to positive
	- **a** local maximum changes the function from increasing to decreasing
		- \blacksquare the gradient changes from **positive** to **negative**

Page 16 of 25

Worked example

Find the stationary points of $\,f(x)\!=\!x(x^2\!-\!27)$, and state their nature.

5.1.3 Modelling with Differentiation

Modelling with Differentiation

What can be modelled with differentiation?

- Recall that differentiation is about the rate of change of a function and provides a way of finding minimum and maximum values of a function
- Anything that involves **maximising** or **minimising** a quantity can be modelled using differentiation; for example
	- **minimising** the cost of raw materials in manufacturing a product
	- the maximum height a football could reach when kicked
- These are called **optimisation** problems

What modelling assumptions are used in optimisation problems?

- \blacksquare The quantity being **optimised** needs to be dependent on a **single** variable
	- If other variables are initially involved, constraints or assumptions about them will need to be made; for example
		- \blacksquare minimising the cost of the **main** raw material timber in manufacturing furniture say the cost of screws, glue, varnish, etc can be fixed or considered negligible
	- Other modelling assumptions may have to be made too; for example
		- ignoring air resistance and wind when modelling the path of a kicked football

How do I solve optimisation problems?

- In optimisation problems, letters other than X , $\,$ $\,$ $\,$ $\,$ $\,$ and $\,$ $\,$ $\,$ $\,$ are often used including capital letters
	- $\;\;\;\;\;\;V$ is often used for volume, $\;S$ for surface area
	- **F** Γ for radius if a circle, cylinder or sphere is involved
- **Derivatives** can still be found but be clear about which variable is independent (X) and which is $dependent (V)$
	- \blacksquare a GDC may always use X and V but ensure you use the correct variable throughout your working and final answer
- Problems often start by linking two connected quantities together for example volume and surface area
	- where more than one variable is involved, constraints will be given such that the quantity of interest can be rewritten in terms of a single variable
- Once the quantity of interest is written as a function of a single variable, differentiation can be used to maximise or minimise the quantity as required

STEP 1

Rewrite the quantity to be optimised as a single variable, using any constraints given in the question

STEP 2

Use your GDC to find the (local) maximum or minimum points as required

Page 19 of 25

Plot the graph of the function and use the graphing features of the GDC to "solve for minimum/maximum" as required

STEP 3

Note down the solution from your GDC and interpret the answer(s) in the context of the question

Q Examiner Tip

The first part of rewriting a quantity as a single variable is often a "show that" question – this means you may still be able to access later parts of the question even if you can't do this bit

Worked example

A large allotment bed is being designed as a rectangle with a semicircle on each end, as shown in the diagram below.

The total area of the bed is to be $100\,\pi\,\text{m}^2$.

a) Show that the perimeter of the bed is given by the formula

$$
P = \pi \left(r + \frac{100}{r} \right)
$$

The width of the rectangle is 2rm and its length Lm The AREA of the bed, 100π m² is given by

 $\frac{1}{2}\pi r^2$ + $2rh + \frac{1}{2}\pi r^2$ = 100 π
 \uparrow total area

semi-circle rectangle semi-circle (this is the constraint)

: $\pi r^2 + 2rL = 100\pi$ $2rL = 100\pi - \pi r^2$ Write L in terms of r $L = \frac{50\pi}{5} - \frac{\pi}{2}r$

The PERIMETER of the bed is

 $P = \pi + \pi + 2L$ 2 1 two straight
Semi-circular arcs lengths

Use L from the area constraint to write P interme of ranky

$$
P = 2\pi r + 2\left(\frac{50\pi}{r} - \frac{\pi}{2}r\right)
$$

$$
P = \pi r + \frac{100\pi}{r}
$$

$$
\therefore P = \pi \left(r + \frac{100}{r}\right)
$$

Your notes

Page 22 of 25

b) Find
$$
\frac{dP}{dr}
$$

\nRewrite P co power of r
\nP = $\pi (r + 100r^{-1})$
\n
$$
\frac{dP}{dr} = \pi (1 - 100r^{-2})
$$
\n
$$
\frac{dP}{dr} = \pi (1 - \frac{100}{r^2})
$$

c) Find the value of \boldsymbol{I} that minimises the perimeter.

Page 24 of 25

The minimum perimeter will be the y-coordinate of the local minimum point faund in part (c) From GDC. $y = 62.831853...$ (when $x = 10$)

: Minimum perimeter is $62.8 m (3 s.f.)$