

IB · **SL** · Chemistry

58 mins

Structured Questions

Electronic Configurations

The Electromagnetic Spectrum / Emission Spectra / Energy Levels, Sublevels & Orbitals / Writing Electron Configurations

Total Marks	/58
Hard (1 question)	/3
Medium (3 questions)	/26
Easy (4 questions)	729

Scan here to return to the course or visit savemyexams.com

Easy Questions

1 (a)	Describe what is meant by the term orbital.	
(b)	Draw the shapes of the s, p_{x_i} , p_y and p_z orbitals.	(1 mark)
(c)	State the maximum number of orbitals in the $n=4$ energy level.	(2 marks)
(d)	List the d, f, p and s orbitals in order of decreasing energies.	(1 mark)
		(2 marks)

	i)	K	[1]
	ii)	Sr ²⁺	[1]
	•••••		
			(2 marks)
(b)	Write	e the condensed electronic configurations for the follov	ving species
	i)	Na	[1]
	ii)	Al ³⁺	[1]
(c)	Com	plete the orbital diagrams of phosphorus and fluorine w.	(2 marks) as shown in the diagram
		Fluorine	

2 (a) Write the full electronic configurations for the following species

(d)	Give the number of each type of orbital in the first four energy levels.	
		(2 marks)

		n the infrared region of the electromagnetic spectrum to the radio intromagnetic spectrum.	region of the
	i)	Wavelength	[1]
	ii)	Frequency	[1]
	iii)	Energy	[1]
			(3 marks)
(b)		cribe the process occurring in an atom to produce a single line on a ctrum.	n emission
			(3 marks)
(c)	Disti	inguish between a continuous spectrum and a line spectrum.	
			(2 marks)
		cribe the emission spectrum of hydrogen. Outline how this spectru rgy levels in the hydrogen atom.	m is related to the

3 (a) Using sections 1 and 5 of the data booklet describe how the following change in moving

(d)	(3 marks)

4 (a)	configurations of aluminium and magnesium.
	(2 marks)
(b)	Using the electron configurations from part (a), explain why the first ionisation energy of aluminium is lower than magnesium.
	(2 marks)

Medium Questions

1 (a) The element chromium has several naturally occurring isotopes whose abundances are shown in **Table 1**.

Table 1

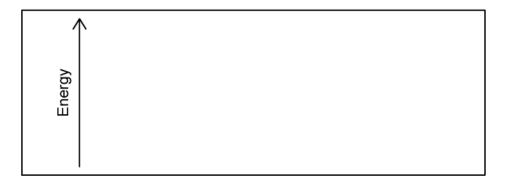
Mass number	% abundance
50	4.345
52	83.789
53	9.501
54	2.365

	Calculate the relative atomic mass of chromium to two decimal places.	
		(2 marks)
(b)	State the full electron configuration for chromium.	
		(1 mark)
(c)	State the meaning of [Ar] and complete the orbital diagram shown below for	chromium.

Figure 1

			[Ar]	4s				3d				
											(2 ma	rks)
(d)	This i)	question State the					21		ns in the	e chromi	ium(III) ion.	[1]
	ii)	Write th	e full elec	tron cor	ıfigura	tion fo	or the c	hromiu	m(III) io	n.		[1]
											(2 ma	rks)

(a)	This	questic	n is al	bou	t line emis	sion sp	pectra of e	lements	5.			
	i)	Explai	n the	diffe	erence bet	ween a	a continuo	us specti	rum and a	a line	spectrum.	[2]
	ii)	ultrav	iolet a	nd	_	ions of	the electr			-	drogen ato Include th	ree
												[4]
				••••••							(6	marks)
(b)					ion spectro				n below ir	n Fig	ure 1 and 1	the
	i)				ation provi			s 1 and	2 of the II	B dat	ta booklet i	
							Figure	1				[1]
			Ηδ	Н	y I	⊣β				Н	Ια	
		_			The visib	le line (emission s	pectrun	n hydroge	en		
							Table '	1				

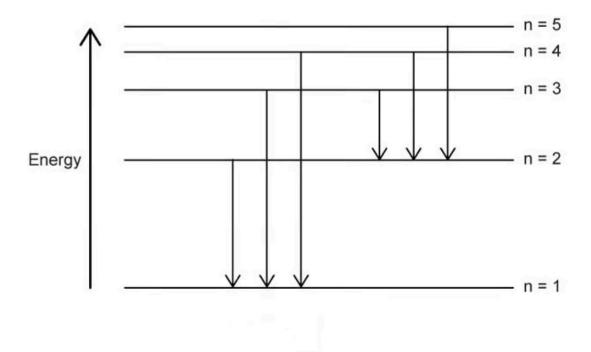

Balmer spectral line	Wavelength in nm	Colour
Ηα	656	Red
Нβ	486	Blue(cyan)
Ну	434	Blue
Нδ	410	Violet

	ii) Which spectral line carries more energy, H α or H δ ?	[1]
		(2 marks)
(c)	Draw the shape of a 1s atomic orbital and 2p atomic orbital.	
		(1 mark)
(d)	Describe the relationship between colour, energy, frequency, and wavelength visible spectrum.	h in the
		(2 marks)

3 (a)	Electron configurations give you a summary of where you can find an electron around the nucleus of an atom. They can also be determined for an ion after an atom loses or gains electrons.				
	i)	State the full electron configuration of the rubidium ion, $^{85}_{37}\mathrm{Rb}^{+}$.	1		
	ii)	State and explain the relative size of a rubidium ion compared to a krypton atom. [2			
(b)		(3 marks) element rubidium has two naturally occurring isotopes of ⁸⁵ Rb and ⁸⁷ Rb. The relative nic mass of rubidium is 85.47. Calculate the percentage abundance of each isotope.	•		
		(2 marks	;)		
(c)		electrons in an atom are found in orbitals around the nucleus, which have different rgy levels sometimes called shells.			
	i)	The fourth shell consists of the atomic orbitals 4d, 4f, 4p and 4s. List these orbitals in order of increasing energy.			
	ii)	State the number of atomic orbitals present in 4d, 4f, 4p and 4s. [1]		

(d) Rubidium forms an ionic compound with selenium, Rb₂Se. Using boxes to represent orbitals and arrows to represent electrons, sketch the orbital diagram of the **valence shell** of selenium on the axis provided.

Figure 1



(1 mark)

Hard Questions

1 (a) The diagram below shows electron transitions in a hydrogen atom in two regions of the electromagnetic spectrum.

Using section 5 of the Data booklet, predict which electron transition is most likely to correspond to the emission of red light.

(1 mark)

(b) Using sections 1 and 5 of the data booklet, predict which electron transition will correspond to the greatest frequency of light emitted.

(1 mark)

(c) The wavelengths of the first four lines for the Balmer series are shown below.

Balmer spectral line	Wavelength in nm	Colour
H _α	656	red
Нβ	486	cyan(blue)
Ну	434	blue
Ηδ	410	violet

Using section 1 of the Data booklet, determine the ratio of the frequencies H_{α} to H_{γ} to 2decimal places.

(1 mark)

