

 $Head \ to \underline{www.savemyexams.com} \ for \ more \ awe some \ resources$ 

# DP IB Maths: AA HL



## 1.5 Further Proof & Reasoning

### **Contents**

- \* 1.5.1 Proof by Induction
- \* 1.5.2 Proof by Contradiction

## 1.5.1 Proof by Induction

# Your notes

## **Proof by Induction**

#### What is proof by induction?

- Proof by induction is a way of proving a result is true for a set of integers by showing that if it is true for one integer then it is true for the next integer
- It can be thought of as dominoes:
  - All dominoes will fall down if:
    - The first domino falls down
    - Each domino falling down causes the next domino to fall down

#### What are the steps for proof by induction?

- STEP 1: The basic step
  - Show the result is true for the base case
  - This is **normally n = 1 or 0** but it could be any integer
    - For example: To prove  $\sum_{r=1}^{n} r^2 = \frac{1}{6} n(n+1)(2n+1)$  is true for all integers  $n \ge 1$  you would

first need to show it is true for n = 1:

$$\sum_{r=1}^{1} r^2 = \frac{1}{6} (1)((1)+1)(2(1)+1)$$

- STEP 2: The assumption step
  - Assume the result is true for n = k for some integer k
    - For example: Assume  $\sum_{r=1}^{k} r^2 = \frac{1}{6} k(k+1)(2k+1) \text{ is true}$
  - There is nothing to do for this step apart from writing down the assumption
- STEP 3: The inductive step
  - Using the assumption show the result is true for n = k + 1
  - It can be helpful to simplify LHS & RHS separately and show they are identical
  - The assumption from STEP 2 will be needed at some point

For example: 
$$LHS = \sum_{r=1}^{k+1} r^2$$
 and  $RHS = \frac{1}{6}(k+1)((k+1)+1)(2(k+1)+1)$ 

- STEP 4: The conclusion step
  - State the result is true
  - Explain in words why the result is true
  - It must include:
    - If true for n = k then it is true for n = k + 1
    - Since true for n = 1 the statement is true for all  $n \in \mathbb{Z}$ ,  $n \ge 1$  by mathematical induction



#### Head to www.savemyexams.com for more awesome resources

■ The sentence will be the same for each proof just change the base case from n = 1 if necessary

# Your notes

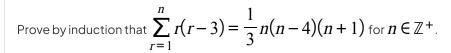
### What type of statements might I be asked to prove by induction?

- Sums of sequences
  - If the terms involve factorials then  $(k+1)! = (k+1) \times (k!)$  is useful
  - These can be written in the form  $\sum_{r=1}^{n} f(r) = g(n)$
  - A useful trick for the inductive step is using  $\sum_{r=1}^{k+1} f(r) = f(k+1) + \sum_{r=1}^{k} f(r)$
- **Divisibility** of an expression by an integer
  - These can be written in the form  $f(n) = m \times q_n$  where  $m \& q_n$  are integers
  - A useful trick for the inductive step is using  $a^{k+1} = a \times a^k$
- Complex numbers
  - You can use proof by induction to prove de Moivre's theorem
- Derivatives
  - Such as chain rule, product rule & quotient rule
  - These can be written in the form  $f^{(n)}(x) = g(x)$
  - A useful trick for the inductive step is using  $f^{(k+1)}(x) = \frac{\mathrm{d}}{\mathrm{d}x}(f^{(k)}(x))$
  - You will have to use the differentiation rules

## Examiner Tip

- Learn the steps for proof by induction and make sure you can use the method for a number of different types of questions before going into the exam
- The trick to answering these questions well is practicing the pattern of using each step regularly

## Worked example



Want to prove 
$$\sum_{r=1}^{n} r(r-3) = \frac{1}{3} n(n-4)(n+1)$$

Basic step  
Show true for 
$$n=1$$

LHS =  $\sum_{r=1}^{1} r(r-3) = (1)(1-3) = -2$ 

RHS = 
$$\frac{1}{3}$$
 (1)(1-4)(1+1) = -2 ... LHS = RHS so true for n=1

Assume true for n=k

Assume 
$$\sum_{r=1}^{k} r(r-3) = \frac{1}{3} k(k-4)(k+1)$$

Inductive step Show true for n= k+1

RHS = 
$$\frac{1}{3}(k+1)((k+1)-4)((k+1)+1) = \frac{1}{3}(k+1)(k-3)(k+2)$$

LHS = 
$$\sum_{r=1}^{k+1} \Gamma(r-3) = (k+1)((k+1)-3) + \sum_{r=1}^{k} \Gamma(r-3)$$
  
=  $(k+1)(k-2) + \frac{1}{3}k(k-4)(k+1)$   
=  $\frac{1}{3}(k+1)[3(k-2) + k(k-4)]$  Factorise  $\frac{1}{3}(k+1)$   
=  $\frac{1}{3}(k+1)[k^2-k-6]$   
=  $\frac{1}{3}(k+1)(k-3)(k+2)$ 

Conclusion step Explain

If true for 
$$n=k$$
 then true for  $n=k+1$ .  
Since it is true for  $n=1$ , the statement  
is true for all  $n \in \mathbb{Z}^+$   

$$\sum_{r=1}^{n} r(r-3) = \frac{1}{3} n(n-4)(n+1)$$



## 1.5.2 Proof by Contradiction

# Your notes

### **Proof by Contradiction**

#### What is proof by contradiction?

- Proof by contradiction is a way of proving a result is true by showing that the negation can not be true
- It is done by:
  - Assuming the negation (opposite) of the result is true
  - Showing that this then leads to a contradiction

#### How do I determine the negation of a statement?

- The **negation** of a statement is the **opposite** 
  - It is the statement that makes the original statement false
- To negate statements that mention "all", "every", "and" "both":
  - Replace these phrases with "there is at least one", "or" or "there exists" and include the opposite
- To negate statements that mention "there is at least one", "or" or "there exists":
  - Replace these phrases with "all", "every", "and" or "both" and include the opposite
- To negate a statement with "if A occurs then B occurs":
  - Replace with "A occurs and the negation of B occurs"
- Examples include:

| Statement                                                                                | Negation                                                                                              |
|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| a is <u>rational</u>                                                                     | a is <u>irrational</u>                                                                                |
| every even number bigger than 2 <u>can</u><br><u>be written</u> as the sum of two primes | there exists an even number bigger<br>than 2 which <u>cannot be written</u> as a<br>sum of two primes |
| n is <u>even and prime</u>                                                               | n is <u>not even or</u> n is <u>not prime</u>                                                         |
| <u>there is at least one odd</u> perfect<br>number                                       | <u>all</u> perfect numbers are <u>even</u>                                                            |
| n <u>is a multiple of 5 or</u> a <u>multiple of 3</u>                                    | n i <u>s not a multiple of 5 and n is not a</u><br><u>multiple of 3</u>                               |
| <u>if n² is even then n is even</u>                                                      | n² is even <u>and n is odd</u>                                                                        |

### What are the steps for proof by contradiction?

- STEP 1: Assume the negation of the statement is true
  - You assume it is true but then try to prove your assumption is wrong

• For example: To prove that there is no smallest positive number you start by assuming there is a smallest positive number called *a* 



- STEP 2: Find two results which contradict each other
  - Use algebra to help with this
  - Consider how a contradiction might arise
    - For example: ½a is positive and it is smaller than a which contradicts that a was the smallest positive number
- STEP 3: Explain why the original statement is true
  - In your explanation mention:
    - The **negation can't be true** as it led to a contradiction
    - Therefore the original statement must be true

#### What type of statements might I be asked to prove by contradiction?

- Irrational numbers
  - To show  $\sqrt[n]{p}$  is irrational where p is a prime
    - Assume  $\sqrt[n]{p} = \frac{a}{h}$  where a & b are integers with no common factors and  $b \ne 0$
    - Use algebra to show that p is a factor of both a & b
  - ${\color{blue}\bullet}$  To show that  $\log_p(q)$  is irrational where p & q are different primes
    - Assume  $\log_p(q) = \frac{a}{b}$  where a & b are integers with no common factors and  $b \ne 0$
    - Use algebra to show  $q^b = p^a$
  - To show that a or b must be irrational if their sum or product is irrational
    - Assume a & b are rational and write as fractions
    - Show that a + b or ab is rational
- Prime numbers
  - To show a polynomial is never prime
    - Assume that it is prime
    - Show there is at least one factor that cannot equal 1
  - To show that there is an infinite number of prime numbers
    - Assume there are *n* primes  $p_1, p_2, ..., p_n$
    - Show that  $p = 1 + p_1 \times p_2 \times ... \times p_n$  is a prime that is bigger than the *n* primes
- Odds and evens
  - To show that n is even if n<sup>2</sup> is even
    - Assume n<sup>2</sup> is even and n is odd
    - Show that n² is odd
- Maximum and minimum values
  - To show that there is no maximum multiple of 3
    - Assume there is a maximum multiple of 3 called a
    - Multiply a by 3



 $Head \, to \, \underline{www.savemyexams.com} \, for \, more \, awe some \, resources \,$ 

## Examiner Tip

- A question won't always state that you should use proof by contradiction, you will need to recognise that it is the correct method to use
  - There will only be two options (e.g. a number is rational or irrational)
  - Contradiction is often used when no other proof seems reasonable



## Worked example

Prove the following statements by contradiction.



Assume the negation is true for a contradiction.

Assume  $n^2$  is a multiple of 3 and n is not a multiple of 3.

Every integer can be written as one of 3k-1, 3k, 3k+1 for some  $k \in \mathbb{Z}$ .

As n is not a multiple of 3 then n=3k+1 or n=3k-1 for some  $k \in \mathbb{Z}$ .

If n=3k+1:  $n^2=(3k+1)^2=9k^2+6k+1=3(3k^2+2k)+1$  so not a multiple of 3.

If n=3k-1:  $n^2=(3k-1)^2=9k^2-6k+1=3(3k^2-2k)+1$  so not a multiple of 3.

In is not a multiple of 3.

This contradicts the statement "n2 is a multiple of 3"

Therefore the assumption is incorrect.

Therefore if n² is a multiple of 3 then n is a multiple of 3.

b)  $\sqrt{3}$  is an irrational number.



## SaveMyExams

Head to www.savemyexams.com for more awesome resources

Assume the negation is true for a contradiction.

Assume  $\sqrt{3}$  is rational so can be written  $\sqrt{3} = \frac{a}{b}$  where a and b are integers with no common factors and b  $\neq 0$ . Square both sides and rearrange

$$3 = \frac{a^2}{b^2}$$
  $\Rightarrow 3b^2 = a^2 \Rightarrow a^2$  is a multiple of  $3 \Rightarrow a$  is a multiple of  $3$   
Let  $a = 3k$  for some  $k \in \mathbb{Z}$   
 $3b^2 = a^2 \Rightarrow 3b^2 = 9k^2 \Rightarrow b^2 = 3k^2 \Rightarrow b^2$  is a multiple of  $3$   
 $\therefore b$  and  $a$  are multiples of  $3$ 

This contradicts the statement "a and b have no common factors".

Therefore the assumption is incorrect.

Therefore  $\sqrt{3}$  is irrational.

