

 $Head \, to \, \underline{www.savemyexams.com} \, for \, more \, awe some \, resources \,$

DP IB Maths: AI HL

5.2 Further Differentiation

Contents

- * 5.2.1 Differentiating Special Functions
- * 5.2.2 Techniques of Differentiation
- * 5.2.3 Related Rates of Change
- * 5.2.4 Second Order Derivatives
- * 5.2.5 Further Applications of Differentiation
- * 5.2.6 Concavity & Points of Inflection

5.2.1 Differentiating Special Functions

Your notes

Differentiating Trig Functions

How do I differentiate sin, cos and tan?

- The derivative of $y = \sin x$ is $\frac{dy}{dx} = \cos x$
- The derivative of $y = \cos x$ is $\frac{dy}{dx} = -\sin x$
- The derivative of $y = \tan x$ is $\frac{dy}{dx} = \frac{1}{\cos^2 x}$
 - This result can be derived using quotient rule
- All three of these derivatives are given in the formula booklet
- For the linear function ax + b, where a and b are constants,
 - the derivative of $y = \sin(ax + b)$ is $\frac{dy}{dx} = a\cos(ax + b)$
 - the derivative of $y = \cos(ax + b)$ is $\frac{dy}{dx} = -a\sin(ax + b)$
 - the derivative of $y = \tan(ax + b)$ is $\frac{dy}{dx} = \frac{a}{\cos^2(ax + b)}$
- For the **general** function f(x),
 - the derivative of $y = \sin(f(x))$ is $\frac{dy}{dx} = f'(x)\cos(f(x))$
 - the derivative of $y = \cos(f(x))$ is $\frac{dy}{dx} = -f'(x)\sin(f(x))$
 - the derivative of $y = \tan(f(x))$ is $\frac{dy}{dx} = \frac{f'(x)}{\cos^2(f(x))}$
- These last three results can be derived using the **chain rule**
- For calculus with trigonometric functions angles must be measured in radians
 - Ensure you know how to change the angle mode on your GDC

Examiner Tip

 As soon as you see a question involving differentiation and trigonometry put your GDC into radians mode

a) Find f'(x) for the functions

i.
$$f(x) = \sin x$$

ii. $f(x) = \cos(5x + 1)$

ii.
$$f'(x) = -5\sin(5x+1)$$

b) A curve has equation $y = \tan \left(6x^2 - \frac{\pi}{4}\right)$.

Find the gradient of the tangent to the curve at the point where $X = \frac{\sqrt{\pi}}{2}$.

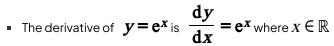
Give your answer as an exact value.

This is of the form
$$y = \tan (f(x))$$

so $\frac{dy}{dx} = \frac{f'(x)}{\cos^2(f(x))}$
 $f(x) = 6x^2 - \frac{\pi}{4}$
 $f'(x) = 12x$
 $\frac{dy}{dx} = \frac{12x}{\cos^2(6x^2 - \frac{\pi}{4})}$
At $x = \sqrt{\frac{\pi}{2}}$, $\frac{dy}{dx} = \frac{12(\frac{\pi}{2})}{\cos^2(6(\frac{\pi}{2})^2 - \frac{\pi}{4})}$
 $= \frac{6\sqrt{\pi}}{\cos^2(\frac{5\pi}{4})}$
 $\frac{dy}{dx} = 12\sqrt{\pi}$ at $x = \frac{\sqrt{\pi}}{2}$

Differentiating e^x & Inx

How do I differentiate exponentials and logarithms?



The derivative of
$$y = \ln x$$
 is $\frac{dy}{dx} = \frac{1}{x}$ where $x > 0$

• For the **linear** function ax + b, where a and b are constants,

• the derivative of
$$y = e^{(ax+b)}$$
 is $\frac{dy}{dx} = ae^{(ax+b)}$

• the derivative of
$$y = \ln(ax + b)$$
 is $\frac{dy}{dx} = \frac{a}{(ax + b)}$

in the special case
$$b = 0$$
, $\frac{dy}{dx} = \frac{1}{x}$ (a's cancel)

• For the general function f(x),

• the derivative of
$$y = e^{f(x)}$$
 is $\frac{dy}{dx} = f'(x)e^{f(x)}$

the derivative of
$$y = \ln(f(x))$$
 is $\frac{dy}{dx} = \frac{f'(x)}{f(x)}$

• The last two sets of results can be derived using the **chain rule**

Examiner Tip

Remember to avoid the common mistakes:

• the derivative of
$$\ln kx$$
 with respect to x is $\frac{1}{x}$, NOT $\frac{k}{x}$

• the derivative of e^{kx} with respect to x is ke^{kx} , NOT kxe^{kx-1}

A curve has the equation $y = e^{-3x+1} + 2\ln 5x$.

Find the gradient of the curve at the point where x = 2 giving your answer in the form $y = a + be^c$, where a, b and c are integers to be found.

$$y = e^{-3x+1} + 2(\ln 5x)$$

$$\frac{dy}{dx} = -3e^{-3x+1} + 2\left(\frac{1}{x}\right)$$

"
$$y=\ln(ax+b)$$
, special case $b=0$, $\frac{dy}{dx}=ae^{ax+b}$ " $\frac{dy}{dx}=ae^{ax+b}$ "

At
$$x=2$$
, $\frac{dy}{dx}=-3e^{-3(2)+1}+\frac{2}{2}=-3e^{-5}+1$

.. Gradient at
$$x=2$$
 is $1-3e^{-5}$
i.e. $a=1$, $b=-3$, $c=-5$

Your GDC may be able .. Gradient at x=2 is $1-3e^{-5}$ to find gradients but probably not in the exact form required. It is still halpful to check approximate arowers

5.2.2 Techniques of Differentiation

Your notes

Chain Rule

What is the chain rule?

- The **chain rule** states if ${m y}$ is a function of ${m u}$ and ${m u}$ is a function of ${m x}$ then

$$y = f(u(x))$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}u} \times \frac{\mathrm{d}u}{\mathrm{d}x}$$

- This is given in the formula booklet
- In function notation this could be written

$$y = f(g(x))$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = f'(g(x))g'(x)$$

How do I know when to use the chain rule?

- The chain rule is used when we are trying to differentiate composite functions
 - "function of a function"
 - these can be identified as the variable (usually X) does not 'appear alone'
 - $\sin X$ **not** a composite function, X 'appears alone'
 - $\sin(3x+2)$ is a composite function; X is tripled and has 2 added to it before the sine function is applied

How do I use the chain rule?

STEP 1

Identify the two functions

Rewrite y as a function of u; y = f(u)

Write u as a function of x; u = g(x)

STEP 2

Differentiate y with respect to u to get $\frac{\mathrm{d}y}{\mathrm{d}u}$

Differentiate u with respect to x to get $\frac{\mathrm{d}u}{\mathrm{d}x}$

STEP 3

Head to www.savemyexams.com for more awesome resources

Obtain
$$\frac{\mathrm{d}y}{\mathrm{d}x}$$
 by applying the formula $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}u} \times \frac{\mathrm{d}u}{\mathrm{d}x}$ and substitute u back in for $g(x)$

• In trickier problems **chain rule** may have to be applied **more than once**

Are there any standard results for using chain rule?

• There are **five** general results that can be useful

If
$$y = (f(x))^n$$
 then $\frac{dy}{dx} = nf'(x)f(x)^{n-1}$

If
$$y = e^{f(x)}$$
 then $\frac{dy}{dx} = f'(x)e^{f(x)}$

If
$$y = \ln(f(x))$$
 then $\frac{dy}{dx} = \frac{f'(x)}{f(x)}$

If
$$y = \sin(f(x))$$
 then $\frac{dy}{dx} = f'(x)\cos(f(x))$

If
$$y = \cos(f(x))$$
 then $\frac{\mathrm{d}y}{\mathrm{d}x} = -f'(x)\sin(f(x))$

- You should aim to be able to spot and carry out the chain rule mentally (rather than use substitution)
 - every time you use it, say it to yourself in your head
 "differentiate the first function ignoring the second, then multiply by the derivative of the second function"

STEP 1 Identify the two functions and rewrite

$$y = v^7$$
 i.e. $f(v) = v^7$
 $v = x^2 - 5x + 7$ i.e. $g(x) = x^2 - 5x + 7$

$$y = 0^7$$

 $y = x^2 - 5x + 7$

i.e.
$$g(x) = x^2 - 5x + 7$$

$$\frac{du}{dv} = 70^6 \qquad \frac{dv}{dx} = 2x - 5$$

Chain rule is in the formula booklet

$$\frac{dy}{dx} = 70^6 (2x-5)$$

and substitute u back for g(x)

$$\frac{dy}{dx} = 7(2x-5)(x^2-5x+7)^6$$

Find the derivative of $y = \sin(e^{2x})$. b)

$$y = Sin(e^{2x})$$
"... differentiate $Sin \square$, ignore e^{2x} ."

 $\frac{dy}{dx} = cos(e^{2x}) \times \lambda e^{2x}$
"... multiply by derivative of e^{2x} ..."

 $y = e^{ax+b}$
 $\frac{dy}{dx} = ae^{ax+b}$
or by applying chain role again

 $\frac{dy}{dx} = \lambda e^{2x} cos(e^{2x})$

Your notes

Product Rule

What is the product rule?

ullet The **product rule** states if y is the product of two functions u(x) and v(x) then

$$y = uv$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = u\frac{\mathrm{d}v}{\mathrm{d}x} + v\frac{\mathrm{d}u}{\mathrm{d}x}$$

- This is given in the formula booklet
- In function notation this could be written as

$$y = f(x)g(x)$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = f(x)g'(x) + g(x)f'(x)$$

• 'Dash notation' may be used as a shorter way of writing the rule

$$y = uv$$

$$y' = uv' + vu'$$

• Final answers should match the notation used throughout the question

How do I know when to use the product rule?

- The product rule is used when we are trying to differentiate the product of two functions
 - these can easily be confused with composite functions (see chain rule)
 - $\sin(\cos X)$ is a composite function, "sin of cos of X"
 - Sin XCOS X is a product, "sin x times cos X"

How do I use the product rule?

- Make it clear what u, v, u' and v' are
 - arranging them in a square can help
 - opposite diagonals match up

STEP 1

Identify the two functions, $\emph{\textbf{\textit{u}}}$ and $\emph{\textbf{\textit{v}}}$

Differentiate both u and v with respect to x to find u' and v'

STEP 2

Obtain
$$\frac{dy}{dx}$$
 by applying the product rule formula $\frac{dy}{dx} = u \frac{dv}{dx} + v \frac{du}{dx}$

Simplify the answer if straightforward to do so or if the question requires a particular form

• In trickier problems **chain rule** may have to be used when finding u^{\prime} and v^{\prime}

 $Head to \underline{www.savemyexams.com} for more awe some resources$

- Use u, v, u' and v' for the elements of product rule
 - lay them out in a 'square' (imagine a 2×2 grid)
 - those that are paired together are then on opposite diagonals (u and v', v and u')
- For trickier functions chain rule may be required inside product rule
 - ullet i.e. chain rule may be needed to differentiate u and v

STEP I Identify functions and differentiate

$$\frac{v = e^{\infty}}{v' = e^{\infty}} \times \frac{v = \sin \infty}{v' = \cos \infty}$$

Carranging u, v, v' in a square

makes product rule 'dicapnal pairs'

STEP 2 Apply product rule: 'dy udv + vdu'

(As it is given in the formula booklet)

$$y' = e^{x} \cos x + e^{x} \sin x$$

$$\frac{dy}{dx} = e^{x} (\cos x + \sin x)$$
| Lie straightforward to take a factor of e^{x} out

Find the derivative of $y = 5x^2 \cos 3x^2$.

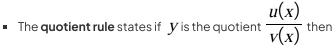
STEP I
$$v = 5x^2$$
 $v = \cos 3x^2$ chain rule $v' = -9in 3x^2 \times 6x$

STEP 2 $y' = -30x^3 \sin 3x^2 + 10x \cos 3x^2$

$$\frac{dy}{dx} = 10x \left(\cos 3x^2 - 3x^2 \sin 3x^2 \right)$$

Quotient Rule

What is the quotient rule?



$$y = \frac{u}{v}$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{v\frac{\mathrm{d}u}{\mathrm{d}x} - u\frac{\mathrm{d}v}{\mathrm{d}x}}{v^2}$$

- This is given in the formula booklet
- In function notation this could be written

$$y = \frac{f(x)}{g(x)}$$

$$\frac{dy}{dx} = \frac{g(x)f'(x) - f(x)g'(x)}{[g(x)]^2}$$

As with product rule, 'dash notation' may be used

$$y = \frac{u}{v}$$
$$y' = \frac{vu' - uv'}{v^2}$$

Final answers should match the notation used throughout the question

How do I know when to use the quotient rule?

- The quotient rule is used when trying to differentiate a fraction where both the numerator and denominator are functions of X
 - if the numerator is a constant, negative powers can be used
 - if the **denominator** is a **constant**, treat it as a **factor** of the expression

How do I use the quotient rule?

- lacksquare Make it clear what u, v, u' and v' are
 - arranging them in a square can help
 - opposite diagonals match up (like they do for product rule)

STEP 1

Identify the two functions, $\boldsymbol{\mathit{U}}$ and $\boldsymbol{\mathit{V}}$

SaveMyExams

Head to www.savemyexams.com for more awesome resources

Differentiate both $\it u$ and $\it v$ with respect to $\it x$ to find $\it u'$ and $\it v'$

Your notes

STEP 2

Obtain
$$\frac{\mathrm{d}y}{\mathrm{d}x}$$
 by applying the quotient rule formula $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{v\frac{\mathrm{d}u}{\mathrm{d}x} - u\frac{\mathrm{d}v}{\mathrm{d}x}}{v^2}$

Be careful using the formula – because of the **minus sign** in the **numerator**, the **order** of the functions is important

Simplify the answer if straightforward or if the question requires a particular form

• In trickier problems **chain rule** may have to be used when finding u' and v',

- Use u, v, u' and v' for the elements of quotient rule
 - lay them out in a 'square' (imagine a 2x2 grid)
 - those that are paired together are then on opposite diagonals (V and u', u and V')
- Look out for functions of the form $y = f(x)(g(x))^{-1}$
 - These can be differentiated using a combination of **chain rule** and **product rule** (it would be good practice to try!)
 - ... but it can also be seen as a quotient rule question in disguise
 - ... and vice versa!
 - A quotient could be seen as a product by rewriting the denominator as $(g(x))^{-1}$

Differentiate $f(x) = \frac{\cos 2x}{3x+2}$ with respect to X.

$$v = \cos 2x$$
 $v' = -2\sin 2x$
 $v' = 3$

chain rule

opposite diagonals
match up

(As it is given in the formula booklet)

$$f'(x) = \frac{(3x+2)(-2\sin 2x) - (\cos 2x)(3)}{(3x+2)^2}$$

:
$$f'(x) = \frac{-2(3x+2)\sin 2x - 3\cos 2x}{(3x+2)^2}$$

(Nothing obvious/easy to simplify and question does not specify a particular form)

5.2.3 Related Rates of Change

Your notes

Related Rates of Change

What is meant by rates of change?

- A rate of change is a measure of how a quantity is changing with respect to another quantity
- Mathematically rates of change are derivatives
 - $\frac{\mathrm{d} V}{\mathrm{d} r}$ could be the rate at which the volume of a sphere changes relative to how its radius is changing
- Context is important when interpreting positive and negative rates of change
 - A positive rate of change would indicate an increase
 - e.g. the change in volume of water as a bathtub fills
 - A negative rate of change would indicate a decrease
 - e.g. the change in volume of water in a leaking bucket

What is meant by related rates of change?

- Related rates of change are connected by a linking variable or parameter
 - this is usually **time**, represented by t
 - seconds is the standard unit for time but this will depend on context
- e.g. Water running into a large bowl
 - both the height and volume of water in the bowl change with time
 - time is the linking parameter

How do I solve problems involving related rates of change?

■ Use of chain rule

$$y = g(u)$$
 $u = f(x) \Rightarrow \frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$

- Chain rule is given in the **formula booklet** in the format above
 - Different letters may be used relative to the context
 - e.g. V for volume, S for surface area, h for height, r for radius
- Problems often involve one quantity being **constant**
 - so another quantity can be expressed in terms of a **single** variable
 - this makes finding a derivative a lot easier
- For time problems at least, it is more convenient to use

$$\frac{\mathrm{d}y}{\mathrm{d}t} = \frac{\mathrm{d}x}{\mathrm{d}t} \times \frac{\mathrm{d}y}{\mathrm{d}x}$$

Head to www.savemyexams.com for more awesome resources

and if it is more convenient to find $\frac{\mathrm{d}x}{\mathrm{d}y}$ than $\frac{\mathrm{d}y}{\mathrm{d}x}$ then use chain rule in the form $\frac{\mathrm{d}y}{\mathrm{d}t} = \frac{\mathrm{d}x}{\mathrm{d}t} \div \frac{\mathrm{d}x}{\mathrm{d}y}$

• Neither of these alternative versions of chain rule are in the formula booklet

STEP 1

Write down the rate of change given and the rate of change required (If unsure of the rates of change involved, use the units given as a clue

e.g. $m \, s^{-1}$ (metres per second) would be the rate of change of length, per time, $\frac{dI}{dt}$)

STEP 2

Use chain rule to form an equation connecting these rates of change with a third rate
The third rate of change will come from a related quantity such as volume, surface area, perimeter

STEP 3

Write down the formula for the related quantity (volume, etc) accounting for any fixed quantities Find the third rate of change of the related quantity (derivative) using differentiation

STEP 4

Substitute the derivative and known rate of change into the equation and solve it

- If you struggle to determine which rate to use in an exam then you can look at the units to help
 - e.g. A rate of 5 cm³ per second implies volume per time so the rate would be $\frac{dV}{dt}$

A cuboid has a square cross-sectional area of side length X cm and a fixed height of 5 cm. The volume of the cuboid is increasing at a rate of 20 cm³ s⁻¹.

Find the rate at which the side length is increasing at the point when its side length is 3 cm.

STEP 2: Form equation from chain rule and a third 'connecting' rate

$$\frac{dV}{dt} = \frac{dx}{dt} \times \frac{dV}{dx}$$

STEP 3: Formula for linking quantity, and its derivative

$$V = x^2 \times 5 = 5x^2$$
 (Cross-section is square, height is constant)

Differentiate,
$$\frac{dV}{dx} = 10x$$

STEP 4: Substitute and solve

$$\frac{dV}{dt} = \frac{dx}{dt} \times \frac{dV}{dx}$$

$$20 = \frac{dx}{dt} \times 10(3)$$

$$x = x \text{ side length is 3}$$

$$\frac{dx}{dt} = \frac{2}{3} \quad cm \ s^{-1}$$

5.2.4 Second Order Derivatives

Your notes

Second Order Derivatives

What is the second order derivative of a function?

- If you differentiate the derivative of a function (i.e. differentiate the function a second time) you get the second order derivative of the function
- There are two forms of notation for the second order derivative
 - y = f(x)
 - $\frac{\mathrm{d}y}{\mathrm{d}x} = f'(x) \quad \text{(First order derivative)}$
 - $d^2y \over dx^2 = f''(x)$ (Second order derivative)
- Note the position of the superscript 2's
 - differentiating twice (so d^2) with respect to X twice (so x^2)
- The **second order derivative** can be referred to simply as the **second derivative**
 - Similarly, the first order derivative can be just the first derivative
- A first order derivative is the rate of change of a function
 - a second order derivative is the rate of change of the rate of change of a function
 - i.e. the rate of change of the function's gradient
- Second order derivatives can be used to
 - test for local minimum and maximum points
 - help determine the nature of stationary points
 - determine the concavity of a function
 - graph derivatives

How do I find a second order derivative of a function?

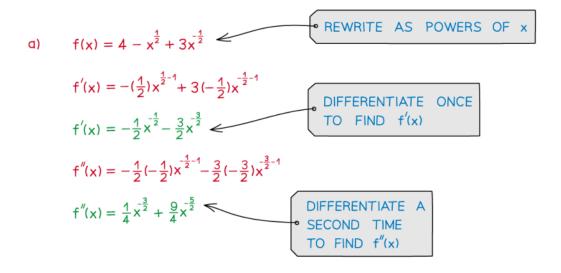
- By differentiating twice!
- This may involve
 - rewriting fractions, roots, etc as negative and/or fractional powers
 - differentiating trigonometric functions, exponentials and logarithms
 - using chain rule
 - using product or quotient rule

Examiner Tip

 Negative and/or fractional powers can cause problems when finding second derivatives so work carefully through each term

Given that $f(x) = 4 - \sqrt{x} + \frac{3}{\sqrt{x}}$

a) Find f'(x) and f''(x).



b) Evaluate f''(3).

Give your answer in the form $a\sqrt{b}$, where b is an integer and a is a rational number.

b)
$$f''(x) = \frac{1}{4x\sqrt{x}} + \frac{9}{4x^2\sqrt{x}}$$

$$f''(3) = \frac{1}{12\sqrt{3}} + \frac{9}{36\sqrt{3}}$$

$$= \frac{12}{36\sqrt{3}} = \frac{1}{3\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} = \frac{\sqrt{3}}{9}$$

$$f''(3) = \frac{1}{9}\sqrt{3}$$
RATIONALISE DENOMINATOR

Head to www.savemyexams.com for more awesome resources

5.2.5 Further Applications of Differentiation

Your notes

Stationary Points & Turning Points

What is the difference between a stationary point and a turning point?

- A stationary point is a point at which the gradient function is equal to zero
 - The tangent to the curve of the function is horizontal
- A turning point is a type of stationary point, but in addition the function changes from increasing to decreasing, or vice versa
 - The curve 'turns' from 'going upwards' to 'going downwards' or vice versa
 - Turning points will either be (local) minimum or maximum points
- A point of inflection could also be a stationary point but is not a turning point

How do I find stationary points and turning points?

• For the function y = f(x), stationary points can be found using the following process

STEP 1

Find the gradient function, $\frac{\mathrm{d}y}{\mathrm{d}x} = f'(x)$

STEP 2

Solve the equation f'(x) = 0 to find the *X*-coordiante(s) of any stationary points

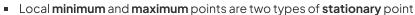
STEP 3

If the Y-coordinates of the stationary points are also required then substitute the X-coordinate(s) into f(x)

A GDC will solve f'(x) = 0 and most will find the coordinates of turning points (minimum and maximum points) in graphing mode

Testing for Local Minimum & Maximum Points

What are local minimum and maximum points?



- The gradient function (derivative) at such points equals zero
- i.e. f'(x) = 0
- A local minimum point, (X, f(X)) will be the lowest value of f(X) in the local vicinity of the value of X
 - The function may reach a lower value further afield
- Similarly, a **local maximum** point, (X, f(X)) will be the highest value of f(X) in the **local** vicinity of the value of X
 - The function may reach a greater value further afield
- The graphs of many functions **tend** to **infinity** for **large** values of X

(and/or minus infinity for large negative values of X)

- The nature of a stationary point refers to whether it is a local minimum point, a local maximum point or a point of inflection
- A global minimum point would represent the lowest value of f(x) for all values of X
 - similar for a **global** maximum point

How do I find local minimum & maximum points?

- The **nature** of a **stationary point** can be determined using the **first derivative** but it is *usually* quicker and easier to use the **second derivative**
 - only in cases when the second derivative is **zero** is the first derivative method needed
- For the function f(x) ...

STFP 1

Find f'(x) and solve f'(x) = 0 to find the X-coordinates of any stationary points

STEP 2 (Second derivative)

Find f''(x) and evaluate it at each of the stationary points found in STEP 1

STEP 3 (Second derivative)

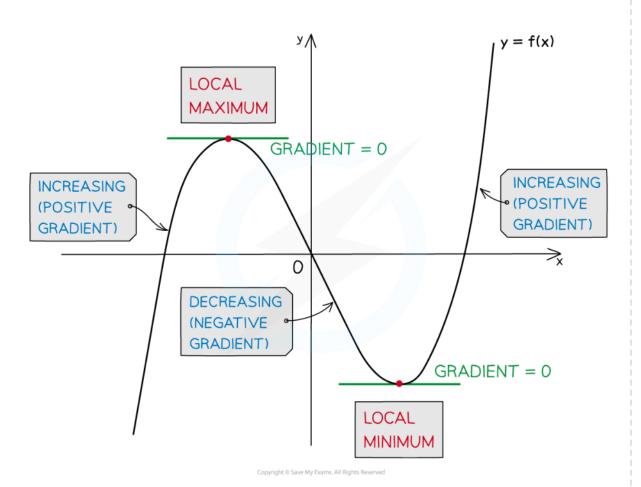
- If f''(x) = 0 then the nature of the stationary point **cannot** be determined; use the **first** derivative method (STEP 4)
- If f''(x) > 0 then the curve of the graph of y = f(x) is **concave up** and the stationary point is a **local minimum** point
- If f''(x) < 0 then the curve of the graph of y = f(x) is **concave down** and the stationary point is a **local maximum** point

STEP 4 (First derivative)

Find the sign of the first derivative just either side of the stationary point; i.e. evaluate f'(x-h) and f'(x+h) for small h

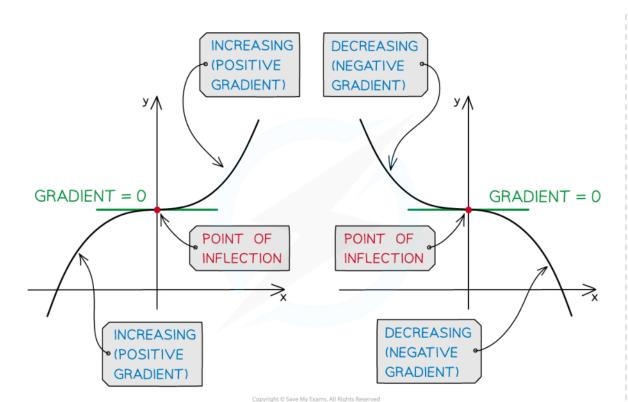
- A local minimum point changes the function from decreasing to increasing
 - the gradient changes from negative to positive
 - f'(x-h) < 0, f'(x) = 0, f'(x+h) > 0
- A local maximum point changes the function from increasing to decreasing
 - the gradient changes from positive to negative

$$f'(x-h) > 0, f'(x) = 0, f'(x+h) < 0$$



- A stationary point of inflection results from the function either increasing or decreasing on both sides of the stationary point
 - the gradient does not change sign
 - f'(x-h) > 0, f'(x+h) > 0 or f'(x-h) < 0, f'(x+h) < 0
 - a point of inflection does not necessarily have f'(x) = 0
 - this method will only find those that do and are often called horizontal points of inflection

Head to www.savemyexams.com for more awesome resources



- Exam questions may use the phrase "classify turning points" instead of "find the nature of turning points"
- Using your GDC to sketch the curve is a valid test for the nature of a stationary point in an exam unless the question says "show that..." or asks for an algebraic method
- Even if required to show a full algebraic solution you can still use your GDC to tell you what you're aiming for and to check your work

 $Head to \underline{www.savemyexams.com} for more awe some resources$

Worked example

Find the coordinates and the nature of any stationary points on the graph of y = f(x) where $f(x) = 2x^3 - 3x^2 - 36x + 25.$

At stationary points,
$$f'(x) = 0$$

 $f'(x) = 6x^2 - 6x - 36 = 6(x^2 - x - 6)$
 $6(x^2 - x - 6) = 0$
 $(x - 3)(x + 2) = 0$
 $x = 3$, $y = f(3) = 2(3)^3 - 3(3)^2 - 36(3) + 25 = -56$
 $x = -2$, $y = f(-2) = 2(-2)^3 - 3(-2)^2 - 36(-2) + 25 = 69$

Using the second derivative to determine their nature

$$f''(x) = 12x - 6 = 6(2x - 1)$$

 $f''(3) = 6(2x3 - 1) = 30 > 0$
 $\therefore x = 3$ is a local minimum point
 $f''(-2) = 6(2x - 2 - 1) = -30 < 0$
 $\therefore x = -2$ is a local maximum point

(Note: In this case, both stationary points are turning points)

Turning points are:
(3,-56) local minimum point
(-2, 69) local maximum point

Use a GDC to graph y=f(xc) and the max/min solving feature to check the answers.

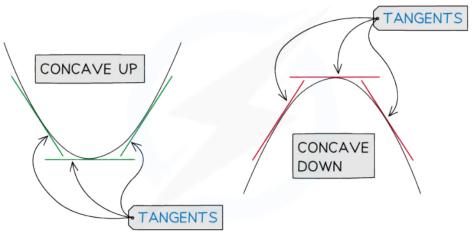
5.2.6 Concavity & Points of Inflection

Your notes

Concavity of a Function

What is concavity?

- Concavity is the way in which a curve (or surface) bends
- Mathematically,
 - a curve is **CONCAVE DOWN** if f''(x) < 0 for all values of X in an interval
 - a curve is **CONCAVE UP** if f''(x) > 0 for all values of X in an interval



- In an exam an easy way to remember the difference is:
 - Concave **down** is the shape of (the mouth of) a sad smiley
 - Concave up is the shape of (the mouth of) a happy smiley ⓒ

The function f(x) is given by $f(x) = x^3 - 3x + 2$.

Determine whether the curve of the graph of y = f(x) is concave down or concave up at the points where x = -2 and x = 2.

$$f(x) = x^3 - 3x + 2$$

$$f'(x) = 3x^2 - 3$$

$$f''(x) = 6x$$

$$f''(-2) = 6x-2 = -12 < 0$$
 (concave down)

At
$$x=-2$$
, $y=f(x)$ is concave down
At $x=2$, $y=f(x)$ is concave up

Use your GDC to plot the graph of y=f(x) and to help see if your answers are sensible

b) Find the values of X for which the curve of the graph y = f(X) of is concave up.

$$f''(x) = 6x$$
 from part (a)
Concave up is $f''(x) > 0$
 $6x > 0$ when $x > 0$

Use your GOC to check your answer

Points of Inflection

What is a point of inflection?

- A point at which the curve of the graph of y = f(x) changes **concavity** is a **point** of **inflection**
- The alternative spelling, **inflexion**, may sometimes be used

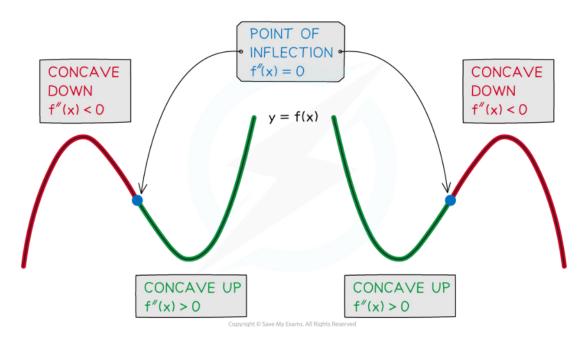
What are the conditions for a point of inflection?

- A point of inflection requires **BOTH** of the following two conditions to hold
 - the **second derivative** is zero

$$f''(x) = 0$$

AND

- the graph of y = f(x) changes concavity
 - f''(x) changes sign through a point of inflection



- It is important to understand that the first condition is not sufficient on its own to locate a point of inflection
 - points where f''(x) = 0 could be **local minimum** or **maximum** points
 - the first derivative test would be needed
 - However, if it is already known f(x) has a point of inflection at x=a, say, then f''(a)=0

What about the first derivative, like with turning points?

Head to www.savemyexams.com for more awesome resources

• A **point** of **inflection**, unlike a turning point, does not necessarily have to have a first derivative value of 0 (f'(x) = 0)

- If it does, it is also a **stationary point** and is often called a **horizontal point** of **inflection**
 - the tangent to the curve at this point would be horizontal
- The **normal distribution** is an example of a commonly used function that has a graph with two non-stationary points of inflection

How do I find the coordinates of a point of inflection?

• For the function f(x)

STEP

Differentiate f(x) twice to find f''(x) and solve f''(x) = 0 to find the X-coordinates of possible points of inflection

STEP 2

Use the second derivative to test the concavity of f(x) either side of x = a

- If f''(x) < 0 then f(x) is concave down
- If f''(x) > 0 then f(x) is concave up

If concavity changes, X = a is a point of inflection

STEP 3

If required, the y-coordinate of a point of inflection can be found by substituting the x-coordinate into f(x)

- You can find the x-coordinates of the point of inflections of y = f(x) by drawing the graph y = f'(x) and finding the x-coordinates of any local maximum or local minimum points
- Another way is to draw the graph y = f''(x) and find the x-coordinates of the points where the graph crosses (not just touches) the x-axis

Find the coordinates of the point of inflection on the graph of $y = 2x^3 - 18x^2 + 24x + 5$. Fully justify that your answer is a point of inflection.

STEP 1: Differentiate twice, solve
$$f''(x) = 0$$

 $f(x) = 2x^3 - 19x^2 + 24x + 5$
 $f'(x) = 6x^2 - 36x + 24$
 $f''(x) = 12x - 36$
 $12x - 36 = 0$ when $x = 3$

STEP 3: The y-coordinate is required
$$f(3) = 2(3)^3 - 18(3)^2 + 24(3) + 5 = -31$$

Since f"(3)=0 AND the graph of y=f(x) changes concavity through x=3, the point (3,-31) is a point of inflection.

Use your GDC to plot the graph of y=f(x)and to help see if your answer is sensible