

 $Head \ to \underline{www.savemyexams.com} \ for \ more \ awe some \ resources$

DP IB Chemistry: HL

18.2 Calculations Involving Acids & Bases

Contents

- * 18.2.1 Acid & Base Dissociation Constants
- * 18.2.2 Acid & Base Problem Solving

18.2.1 Acid & Base Dissociation Constants

Your notes

Acid & Base Dissociation Constants

Weak acids

- A weak acid is an acid that partially (or incompletely) dissociates in aqueous solutions
 - For example, most carboxylic acids (e.g. ethanoic acid), HCN (hydrocyanic acid), H₂S (hydrogen sulfide) and H₂CO₃ (carbonic acid)
 - In general, the following equilibrium is established:

HA (aq) +
$$H_2O(I) \neq A^-(aq) + H_3O^+(aq)$$

OR

HA (aq) $\neq A^-(aq) + H^+(aq)$

- At equilibrium, the majority of HA molecules remain unreacted
- The position of the equilibrium is more over to the **left** and an equilibrium is established
- As this is an equilibrium, we can write an equilibrium constant expression for the reaction
- This constant is called the **acid dissociation constant**, K_a , and has the units mol dm⁻³

$$K_{a} = \frac{[A^{-}][H_{3}O^{+}]}{[HA]}$$

$$K_{a} = \frac{[A^{-}][H^{+}]}{[HA]}$$
Copyright © Save My Exams. All Rights Reserved

Acid dissociation constant expressions

- Carboxylic acids are weak acids
 - For example, propanoic acid, CH₃CH₂COOH (aq), dissociates according to the following equation which leads to the *K*_a expression for propanoic acid:

CH₃CH₂COOH (aq) + H₂O (I)
$$\neq$$
 CH₃CH₂COO⁻ (aq) + H₃O⁺ (aq)

OR

CH₃CH₂COOH (aq) \neq CH₃CH₂COO⁻ (aq) + H⁺ (aq)

Head to www.savemyexams.com for more awesome resources

$$K_{a} = \frac{[CH_{3}CH_{2}COO^{-}][H_{3}O^{+}]}{[CH_{3}CH_{2}COOH]}$$

$$K_{a} = \frac{[CH_{3}CH_{2}COO^{-}][H^{+}]}{[CH_{3}CH_{2}COOH]}$$

Acid dissociation constant expressions for propanoic acid

- Values of K_a are very small
 - For example, K_a for propanoic acid = 1.34×10^{-5} mol dm⁻³
- When writing the equilibrium expression for weak acids, we assume that the concentration of H₃O⁺
 (aq) due to the ionisation of water is negligible

Weak bases

- A weak base will also ionise in water and we can represent this with the base dissociation constant, K_b
- In general the equilibrium established is:

$$B(aq) + H_2O(I) \neq BH^+(aq) + OH^-(aq)$$

$$K_b = \frac{[BH^+][OH^-]}{[B]}$$
Copyright © Save My Exams. All Rights Reserved

Base dissociation constant expression

- Amines are weak bases
 - For example, 1–phenylmethanamine, C₆H₅CH₂NH₂ (aq), dissociates according to the following equation which leads to the K_a expression for 1–phenylmethanamine:

$$C_6H_5CH_2NH_2$$
 (aq) + H_2O (I) \Rightarrow $C_6H_5CH_2NH_3^+$ (aq) + OH^- (aq)

$$K_{b} = \frac{[C_{6}H_{5}CH_{2}NH_{3}^{+}][OH^{-}]}{[C_{6}H_{5}CH_{2}NH_{2}]}$$

Base dissociation constant expression for 1-phenylmethanamine

pK_a and pK_b

■ The range of values of K_a and K_b is very wide and for weak acids, the values themselves are very small numbers

Table of K_a values

Acid	Ka∕mol dm ⁻³
Methanoic, HCOOH	1.77 × 10 ⁻⁴
Ethanoic, CH ₃ COOH	1.74 × 10 ⁻⁵
Benzoic, C ₆ H ₅ COOH	6.46 × 10 ⁻⁵
Carbonic, H ₂ CO ₃	4.30 × 10 ⁻⁷

Copyright © Save My Exams. All Rights Reserved

• In order to convert the values we need to apply the following calculations:

$$pK_a = -logK_a$$
 $K_a = 10^{-pK_a}$

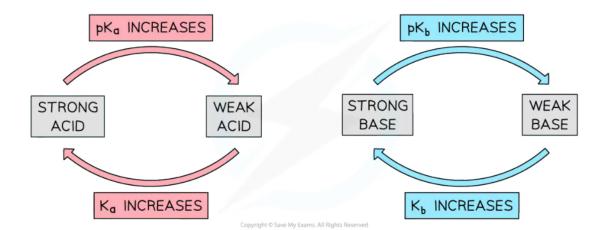
$$pK_b = -logK_b$$
 $K_b = 10^{-pK_b}$

Table of pK_a values

Acid	Ka∕mol dm ⁻³	рКа
Methanoic, HCOOH	1.77 × 10 ⁻⁴	3.75
Ethanoic, CH ₃ COOH	1.74 × 10 ⁻⁵	4.75
Benzoic, C ₆ H ₅ COOH	6.46 × 10 ⁻⁵	4.18
Carbonic, H ₂ CO ₃	4.30 × 10 ⁻⁷	6.36

Copyright © Save My Exams. All Rights Reserved

• The range of pK_a values for most weak acids lies between 3 and 7


Relative Strengths of Acids and Bases

- The larger the K_a value, the stronger the acid
- The larger the pK_a value, the weaker the acid
- The larger the K_b value, the stronger the base
- The larger the pK_b value, the weaker the base

 $Head \, to \, \underline{www.savemyexams.com} \, for \, more \, awe some \, resources \,$

 pK_a and pK_b tell us the relative strengths of acids and bases

Head to www.savemyexams.com for more awesome resources

Relating Kw to Ka

The Ionic Product of Water and Temperature

- In all aqueous solutions, an equilibrium exists in water where a few water molecules dissociate into protons and hydroxide ions
- We can derive an equilibrium constant for the reaction:

$$2H_2O(I) = H_3O^+(aq) + OH^-(aq)$$

• The concentration of water is constant, so the expression for K_w is:

$$K_{w} = [H_{3}O^{+}][OH^{-}]$$

- This is a specific equilibrium constant called the ionic product for water
- The product of the two ion concentrations is 1x10⁻¹⁴ mol² dm⁻⁶ at 25 °C
- For conjugate acid-base pairs, K_a and K_b are related to K_w

$$K_a K_b = K_w$$

■ The conjugate base of ethanoic acid is the ethanoate ion, CH₃COO⁻(aq)

$$CH_3COOH(aq) + H_2O(I) \neq CH_3COO^-(aq) + H_3O^+(aq)$$

acid

conjugate base

• We can then put this in to the K_a expression

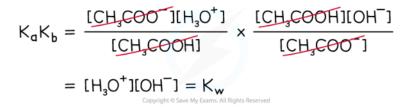
$$K_{a} = \frac{[CH_{3}COO^{-}][H_{3}O^{+}]}{[CH_{3}COOH]}$$

Acid dissociation constant for ethanoic acid

The ethanoate ion will react with water according to the following equation

$$CH_3COO^-(aq) + H_2O(I) \Rightarrow CH_3COOH(aq) + OH^-(aq)$$

• We can then put this in to the K_b expression


$$K_b = \frac{\text{[CH}_3\text{COOH][OH}^-\text{]}}{\text{[CH}_3\text{COO}^-\text{]}}$$

Base dissociation constant for the ethanoate ion

• Now, these two expressions can be combined, which corresponds to

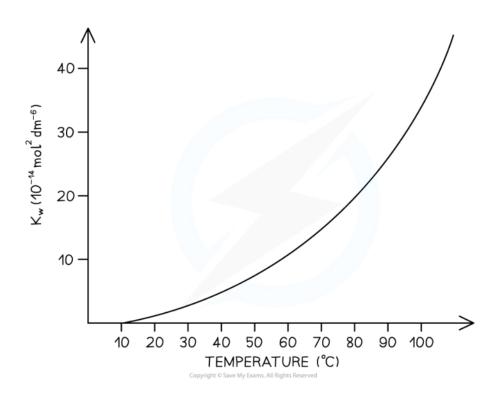
- K_a K_b = K_w
- $K_a K_b = 10^{-14}$
- Or we could say that
 - $PK_a + pK_b = pK_w$
 - $pK_a + pK_b = 14$
 - This makes the numbers much more easy to deal with as using $K_a K_b = 10^{-14}$ will give very small numbers

Combining K_a K_b expressions

- Or rearranging these:
 - $K_a = K_w / K_b$
 - $K_b = K_w / K_a$

The ionic product of water, $K_{\rm w}$

■ The ionisation of water is an **endothermic** process


$$2H_2O(I) = H_3O^+ aq) + OH^-(aq)$$

- In accordance with Le Châtelier's principle, an increase in temperature will result in the forward reaction being favoured
 - This causes an increase in the concentration of the hydrogen and hydroxide ions
 - This leads to the magnitude of K_w increasing
 - Therefore, the **pH will decrease**
- Increasing the temperature, decreases the pH of water (becomes more acidic)
- Decreasing the temperature, increases the pH of water (becomes more basic)

 $Head to \underline{www.savemyexams.com} for more awe some resources$

Relationship between K_w and temperature

18.2.2 Acid & Base Problem Solving

Your notes

Acid & Base Calculations

рΗ

- The acidity of an aqueous solution depends on the number of H₃O⁺ ions in solution
- pH is defined as:

$$pH = -log[H_3O^+]$$

- Where [H₃O+] is the concentration of H₃O+ ions in mol dm⁻³
- Similarly, the **concentration of H**⁺ of a solution can be calculated if the pH is known by rearranging the above equation to:

$$[H_3O^+] = 10^{-pH}$$

- The pH scale is a logarithmic scale with base 10
- This means that each value is 10 times the value below it
 - For example, pH 5 is 10 times more acidic than pH 6
- pH values are usually given to 2 decimal places

pOH

- The basicity of an aqueous solution depends on the number of hydroxide ions, OH⁻, in solution
- pOH is defined as:

$$pOH = -log[OH^{-}]$$

- Where [OH⁻] is the concentration of hydroxide ions in mol dm⁻³
- Similarly, the **concentration of OH**⁻ of a solution can be calculated if the pH is known by rearranging the above equation to:

$$[OH^{-}] = 10^{-pOH}$$

• If you are given the concentration of a basic solution and need to find the pH, this can be done by:

$$[H_3O^+] = K_W / [OH^-]$$

■ Alternatively, if you are given the [OH-] and calculate the pOH, the pH can be found by:

$$pH = 14 - pOH$$

Worked example

pH and H₃O+ calculations

- 1. Find the pH when the hydrogen ion concentration is 1.60 x 10^{-4} mol dm⁻³
- 2. Find the hydrogen ion concentration when the pH is 3.10

Answers

Answer 1:

The pH of the solution is:

- $PH = -log[H_3O^+]$
 - pH = $-\log 1.6 \times 10^{-4}$
 - pH = 3.80

Answer 2:

The hydrogen concentration can be calculated by rearranging the equation for pH

- pH = -log [H₃O+]
- \blacksquare [H₃O⁺] = 10^{-pH}
 - \blacksquare [H₃O⁺] = 10^{-3.10}
 - \blacksquare [H₃O⁺] = **7.94** x 10⁻⁴ mol dm⁻³

Worked example

pH calculations of a strong alkali

- 1. Calculate the pH of 0.15 mol dm⁻³ sodium hydroxide, NaOH
- 2. Calculate the hydroxide concentration of a solution of sodium hydroxide when the pH is 10.50

Answers

Sodium hydroxide is a strong base which ionises as follows:

$$NaOH(aq) \rightarrow Na^{+}(aq) + OH^{-}(aq)$$

Answer 1:

The pH of the solution is:

- $[H^+] = K_w \div [OH^-]$
 - \blacksquare [H+] = (1 x 10⁻¹⁴) ÷ 0.15 = 6.66 x 10⁻¹⁴
- pH = -log[H+]

• pH = $-\log 6.66 \times 10^{-14}$ = 13.17

Your notes

Answer 2

Step 1: Calculate hydrogen concentration by rearranging the equation for pH

- pH = -log[H+]
- \blacksquare [H+] = 10-pH
 - \blacksquare [H+] = 10^{-10.50}
 - \blacksquare [H+] = 3.16 x 10⁻¹¹ mol dm⁻³

Step 2: Rearrange the ionic product of water to find the concentration of hydroxide ions

- K_w = [H⁺] [OH⁻]
- $[OH^-] = K_w \div [H^+]$

Step 3: Substitute the values into the expression to find the concentration of hydroxide ions

- Since K_w is 1×10^{-14} mol² dm⁻⁶
 - $[OH^{-}] = (1 \times 10^{-14}) \div (3.16 \times 10^{-11})$
 - \blacksquare [OH-] = 3.16 x 10⁻⁴ mol dm⁻³

K_a , pK_a , K_b and pK_b

- In reactions of weak acids and bases, we cannot make the same assumptions as for the ionisation of strong acids and bases
- For a weak acid and its conjugate base, we can use the equation:

$$K_{\rm w} = K_{\rm a} K_{\rm b}$$

By finding the -log of these, we can use:

$$pK_w = pK_a + pK_b$$

• Remember, to convert these terms you need to use:

$$pK_a = -\log K_a$$
 $K_a = 10^{-pK_a}$

$$pK_b = -\log K_b$$
 $K_b = 10^{-pK_b}$

- The assumptions we must make when calculating values for K_a , pK_a , K_b and pK_b are:
 - The initial concentration of acid ≈ the equilibrium concentration of acid
 - $[A^-] = [H_3O^+]$
 - $\,\blacksquare\,$ There is negligible ionisation of the water, so [H $_3O^+]$ is not affected
 - The temperature is 25 °C

Worked example

Calculate the acid dissociation constant, K_a , at 298 K for a 0.20 mol dm⁻³ solution of propanoic acid with a pH of 4.88.

Answer

Step 1: Calculate [H₃O+] using

- $[H_3O^+] = 10^{-pH}$
 - \blacksquare [H₃O⁺] = 10^{-4.88}
 - \blacksquare [H₃O+] = 1.3182 x 10⁻⁵

Step 2: Substitute values into K_a expression

- $K_a = [H_3O^+]^2 / [CH_3CH_2COOH]$
 - $K_a = (1.3182 \times 10^{-5})^2 / 0.2$
 - $K_a = 8.70 \times 10^{-10} \,\text{mol dm}^{-3}$

Worked example

A 0.035 mol dm $^{-3}$ sample of methylamine (CH $_3$ NH $_2$) has pK $_b$ value of 3.35 at 298 K. Calculate the pH of methylamine.

Answer

Step 1: Calculate the value for K_b using

- $K_b = 10^{-pK_b}$
 - $K_b = 10^{-3.35}$
 - $K_b = 4.4668 \times 10^{-4}$

Step 2: Substitute values into K_b expression to calculate [OH $^-$]

- $K_b = [OH^-]^2 / [CH_3NH_2]$
- $4.4668 \times 10^{-4} = [OH^{-}]^{2} / 0.035$
- $[OH^{-}] = \sqrt{(4.4668 \times 10^{-4} \times 0.035)}$
- $[OH^-] = 3.9539 \times 10^{-3}$

Step 3: Calculate the pH

- $[H^+] = K_w \div [OH^-]$
 - \blacksquare [H+] = (1 x 10⁻¹⁴) ÷ 3.9539 x 10⁻³

$Head \, to \, \underline{www.savemyexams.com} \, for \, more \, awe some \, resources \,$

- pH = -log [H+]
 - pH = 2.5290×10^{-12}
 - pH = 11.60 to 2 decimal places

Step 3: Calculate pOH and therefore pH

- pOH = -log [OH⁻]
 - $pOH = -log 3.9539 \times 10^{-3}$
 - pOH = 2.4029
- pH = 14 pOH
 - PH = 14 2.4029
 - pH = 11.60 to 2 decimal places

