

 $Head \ to \underline{www.savemyexams.com} \ for \ more \ awe some \ resources$

SL IB Biology

Organelles & Compartmentalisation

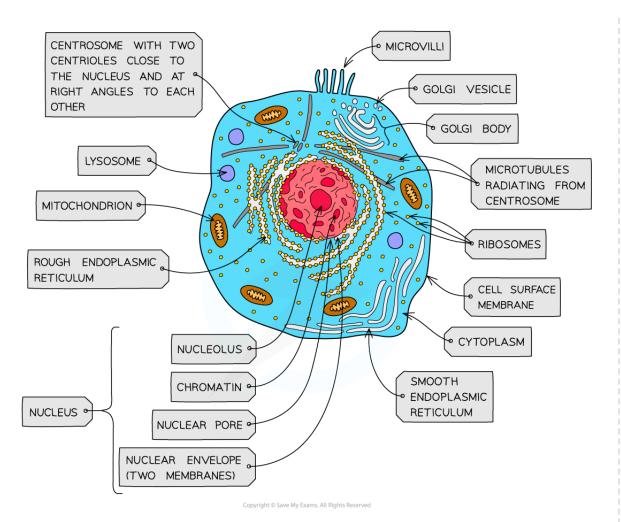
Contents

- * Cell Organelles
- * Cell Compartmentalisation

Cell Organelles

Your notes

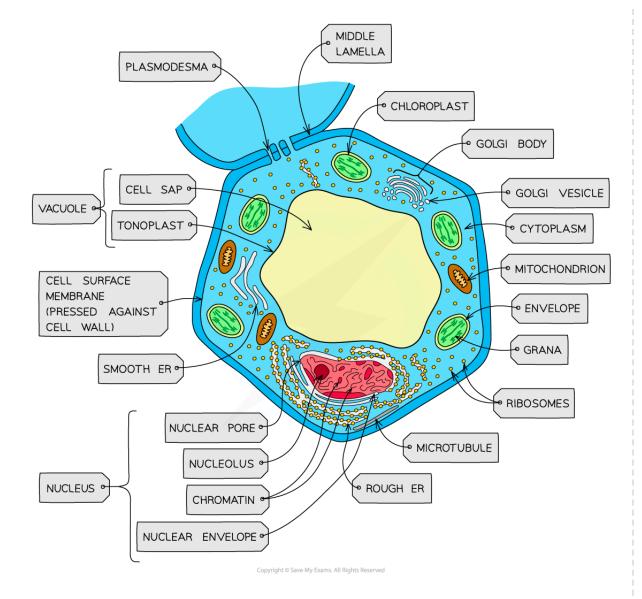
Cell Organelles


Compartmentalised cell structure

- Eukaryotic cells have a more **complex ultrastructure** than prokaryotic cells
- The cytoplasm of eukaryotic cells is divided up into membrane-bound compartments called organelles. These compartments are either bound by a single or double membrane
- Due to the absence of a membrane the following structures are **not considered organelles**
 - Cell wall
 - Cytoskeleton
 - Cytoplasm
- Eukaryotic cells have a number of **compartmentalised organelles** including:
 - The nucleus
 - Vesicles
 - Ribosomes
 - The plasma membrane
- The compartmentalisation of the cell is advantageous as it allows:
 - Enzymes and substrates to be localised and therefore available at higher concentrations
 - Damaging substances to be kept separated, e.g. digestive enzymes are stored in lysosomes so they do not digest the cell
 - Optimal conditions to be maintained for certain processes e.g. optimal pH for digestive enzymes
 - The numbers and location of organelles to be altered depending on requirements of the cell

Eukaryotic Animal Cell Structure Diagram

Head to www.savemyexams.com for more awesome resources


The ultrastructure of an animal cell shows a densely packed cell of compartmentalised organelles

Eukaryotic Plant Cell Structure Diagram

Head to www.savemyexams.com for more awesome resources

Plant cells have a larger, more regular structure in comparison to animal cells which also contains compartmentalised organelles

Organelle Adaptations

- In complex cells **organelles** can become **specialised** for **specific functions**
- These specialised organelles have **specific adaptations** to help them carry out their functions
- For example, the **structure of a organelle** is adapted to help it carry out its **function** (this is why each organelle looks very **different** from each other)
- The separation of organelles from the rest of the cell, via a membrane (sometimes double), is important
 as it allows the organelle to carry out its own chemical reactions without interference from the rest of
 the cell

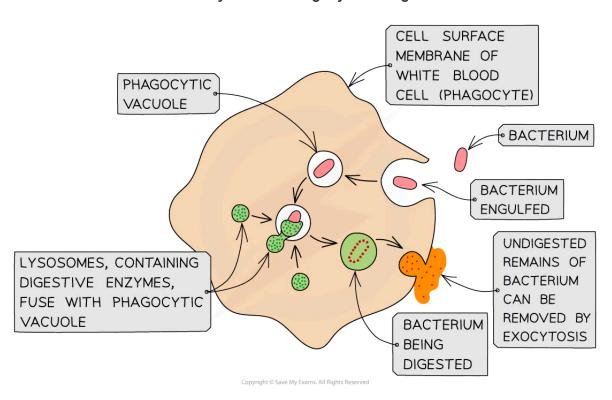
NOS: Students should recognise that progress in science often follows development of new techniques

- Study of the function of individual organelles has become possible following the invention of ultracentrifuges and methods of using them for cell fractionation had been developed
 - In order to study cells at a molecular level we need to be able to separate out each compartment and study them individually in a process called cell fractionation
 - To do this a **pure sample** is needed (containing only the specific organelle being studied)
 - This process involves breaking up a suitable sample of tissue and then centrifuging the mixture at different speeds
 - Cell fractionation can be split into three stages:
 - Homogenisation the cell sample is broken up using a homogeniser which is a blender-like machine
 - **Filtration** the homogenate (containing the homogenised cells) is then filtered through a gauze
 - Ultracentrifugation the filtrate is placed into a tube and the tube is placed in a centrifuge
 - A centrifuge is a machine that separates materials by **spinning**
 - This speed can be altered to separate different components of the cell based on their molecular weight
 - Until this was invented, research into separate organelles was limited

Cell Compartmentalisation

Your notes

Separating The Nucleus & Cytoplasm


- The **nucleus** is one of the key organelles that distinguishes eukaryotic cells from prokaryotic cells
- It allows many cell processes to take place more efficiently than in prokaryotes
 - Gene transcription and translation are two process that occur in both eukaryotes and prokaryotes
 - In **prokaryotes** these processes take place **simultaneously** which allows for rapid responses to an environmental stimuli
 - In eukaryotes these processes occur separately due to the compartmentalisation of the nucleus
 - During transcription, mRNA is formed using a template strand of DNA; the mRNA needs some modification before it can be used for translation
 - Modification can take place in isolation within the nucleus before it comes into contact with a ribosome (this is where translation occurs) unlike in prokaryotes where the mRNA immediately meets a ribosome
 - This step reduces the chance of errors occurring in the mRNA code and therefore in the resulting protein following translation

Compartmentalisation In The Cytoplasm

- The **cytoplasm** is not considered an organelle, but it's **separation from organelles** via their membranes is an advantage for the cell
- Organisation of the eukaryotic cell into discrete membrane-bound organelles allows for the separation of incompatible biochemical processes
- This ensures that pathways requiring specific **enzymes or metabolites** run smoothly and are not at risk from interference from other cell structures or chemicals
 - Such reactions can coexist within one organelle by localising conflicting reactions, for example in
 plant cells a type of enzyme called nitrogenase (used for nitrogen fixation) is particularly sensitive
 to oxygen so it is positioned in an anaerobic part of the cytoplasm away from aerobic reactions
 - Lysosomes require lytic enzymes which could be harmful to the cell if they were not contained by the lysosome membrane
 - During endocytosis a phagocytic vacuole forms around potentially toxic and harmful substances, such as bacteria; this keeps the contents separate from the cytoplasm and rest of the cell until a lysosome can safely digest the material

Endocytosis and Phagocytosis Diagram

The formation of a phagocytic vacuole ensures harmful substances, such as bacteria, are kept separate from the cytoplasm and the rest of the cell

