

4.6 Normal Distribution

Contents

- $*$ 4.6.1 The Normal Distribution
- $*$ 4.6.2 Calculations with Normal Distribution
- **≭** 4.6.3 Standardisation of Normal Variables

4.6.1 The Normal Distribution

Properties of Normal Distribution

The binomial distribution is an example of a discrete probability distribution. The normal distribution is an example of a **continuous** probability distribution.

What is a continuous random variable?

- A continuous random variable (often abbreviated to CRV) is a random variable that can take any value within a range of infinite values
	- Continuous random variables usually measure something
	- For example, height, weight, time, etc

What is a continuous probability distribution?

- $\hspace{0.1mm}$ $\hspace{0.1mm}$ A continuous probability distribution in which the random variable X is continuous
- $\;\;\bar{ } \;\;\;$ The probability of X being a **particular value is always zero**
	- $P(X = k) = 0$ for any value k
	- Instead we define the **probability density function** $f(x)$ for a specific value
		- \blacksquare This is a function that describes the **relative likelihood** that the random variable would be close to that value
	- $\;\;\;\;$ We talk about the **probability** of X being within a **certain range**
- $\hspace{0.1mm}$ $\hspace{0.1mm}$ A continuous probability distribution can be represented by a continuous graph (the values for X along the horizontal axis and probability **density** on the vertical axis)
- The area under the graph between the points x = a and x = b is equal to $\mathrm{P}(a \leq X \leq b)$
	- The total area under the graph equals 1
- \Box As $\mathrm{P}(X^{\pm}k)=0$ for any value k, it does not matter if we use strict or weak inequalities
	- $P(X \le k) = P(X \le k)$ for any value k when X is a **continuous random variable**

What is a normal distribution?

- A normal distribution is a continuous probability distribution
- $\;\;\bar{}\;$ The **continuous random variable** X can follow a normal distribution if:
	- The distribution is symmetrical
	- The distribution is **bell-shaped**
- If X follows a normal distribution then it is denoted X \sim $\text{N}(\mu,\,\sigma^2)$
	- **■** *µ* is the **mean**
	- σ^2 is the **variance**
	- *σ* is the **standard deviation**
- If the mean changes then the graph is translated horizontally

Page 2 of 14

- If the variance increases then the graph is widened horizontally and made shorter vertically to maintain the same area
	- \blacksquare A small variance leads to a tall curve with a narrow centre
	- A large variance leads to a short curve with a wide centre

What are the important properties of a normal distribution?

- **The mean is** μ
- The **variance** is σ^2
	- If you need the standard deviation remember to square root this
- The normal distribution is symmetrical about $X = \mu$
	- $Mear = Median = Mode = *µ*$
- There are the results:
	- Approximately two-thirds (68%) of the data lies within one standard deviation of the mean ($\mu \pm \sigma$)
	- Approximately 95% of the data lies within two standard deviations of the mean ($\mu \pm 2\sigma$)
	- Nearly all of the data (99.7%) lies within three standard deviations of the mean ($\mu \pm 3\sigma$)

SaveMyExams Head to [www.savemyexams.com](https://www.savemyexams.com/?utm_source=pdf) for more awesome resources

Your notes

Page 4 of 14

Modelling with Normal Distribution

What can be modelled using a normal distribution?

- A lot of real-life continuous variables can be modelled by a normal distribution provided that the population is large enough and that the variable is symmetrical with one mode
- $\;\bar\;$ For a normal distribution X can take any real value, however values far from the mean (more than 4 standard deviations away from the mean) have a probability density of practically zero
	- This fact allows us to model variables that are not defined for all real values such as height and weight

What can not be modelled using a normal distribution?

- Variables which have more than one mode or no mode
	- For example: the number given by a random number generator
- Variables which are not symmetrical
	- **For example: how long a human lives for**

Q Examiner Tip

An exam question might involve different types of distributions so make it clear which distribution is being used for each variable

Your notes The random variable S represents the speeds (mph) of a certain species of cheetahs when they run. The variable is modelled using $N(40, 100)$. Write down the mean and standard deviation of the running speeds of cheetahs. a) $\mu = 40$ and $\sigma^2 = 100$ †
Square root to get standard deviation Mean M=40 Standard deviation $\sigma = 10$ State two assumptions that have been made in order to use this model. b) We assume that the distribution of the speeds is · symmetrical
· bell-shaped

Worked example

4.6.2 Calculations with Normal Distribution

Calculating Normal Probabilities

Throughout this section we will use the random variable $X\!\sim\!\text{N}(\mu,\,\sigma^2)$. For X distributed normally, X can take any real number. Therefore any values mentioned in this section will be assumed to be real numbers.

How do I find probabilities using a normal distribution?

- The area under a normal curve between the points $x = a$ and $x = b$ is equal to the probability $P(a < X < b)$
	- Remember for a normal distribution you do not need to worry about whether the inequality is strict $(<$ or >) or weak (\le or \ge)

 $P(a < X < b) = P(a < X < b)$

You will be expected to use distribution functions on your GDC to find the probabilities when working with a normal distribution

How do I calculate $P(X = x)$: the probability of a single value for a normal distribution?

- \blacksquare The probability of a single value is always zero for a normal distribution **You can picture this as the area of a single line is zero**
- $P(X = x) = 0$
- Your GDC is likely to have a "Normal Probability Density" function
	- This is sometimes shortened to NPD, Normal PD or Normal Pdf
	- **IGNORE THIS FUNCTION** for this course!
	- \blacksquare This calculates the probability density function at a point NOT the probability

How do I calculate $P(a < X < b)$: the probability of a range of values for a normal distribution?

- You need a GDC that can calculate cumulative normal probabilities
- Vou want to use the "Normal Cumulative Distribution" function
	- This is sometimes shortened to NCD, Normal CD or Normal Cdf
- **You will need to enter:**
	- \blacksquare The 'lower bound' this is the value a
	- \blacksquare The 'upper bound' this is the value b
	- The ' μ ' value this is the mean
	- The '*σ*' value this is the standard deviation
- **Check the order carefully** as some calculators ask for standard deviation before mean
	- **Remember it is the standard deviation**
		- so if you have the variance then square root it
- **Always sketch** a quick diagram to visualise which area you are looking for

How do I calculate $P(X > a)$ or $P(X < b)$ for a normal distribution?

Page 7 of 14

SaveMyExams

- **You will still use the "Normal Cumulative Distribution"** function
- $\mathbb{P}(X > a)$ can be estimated using an **upper bound that is sufficiently bigger** than the **mean**
	- Using a value that is more than 4 standard deviations **bigger than the mean** is quite accurate
	- Or an easier option is just to input lots of 9's for the upper bound (99999999... or 10⁹⁹)
- $\mathbb{P}(X\!<\!b)$ can be estimated using a **lower bound that is sufficiently smaller** than the **mean**
	- Using a value that is more than 4 standard deviations smaller than the mean is quite accurate
	- Or an easier option is just to input lots of 9's for the lower bound with a negative sign (-99999999... or -10^{99})

Are there any useful identities?

- $P(X < \mu) = P(X > \mu) = 0.5$
- As $P(X = a) = 0$ you can use:
	- $P(X < a) + P(X > a) = 1$
	- P($X > a$) = 1 P($X < a$)
	- $P(a < X < b) = P(X < b) P(X < a)$
- **These are useful when:**
	- **F** The mean and/or standard deviation are unknown
	- **You only have a diagram**
	- You are working with the inverse distribution

Q Examiner Tip

Check carefully whether you have entered the standard deviation or variance into your GDC

Inverse Normal Distribution

Given the value of $P(X < a)$ how do I find the value of a?

- **F** Your GDC will have a function called "Inverse Normal Distribution"
	- Some calculators call this InvN
- Given that $P(X < a) = p$ you will need to enter:
	- \blacksquare The 'area' this is the value p
		- Some calculators might ask for the 'tail' this is the left tail as you know the area to the left of a
	- The ' μ ' value this is the mean
	- The '*σ*' value this is the standard deviation

Given the value of $P(X > a)$ how do I find the value of a?

- If your calculator **does** have the tail option (left, right or centre) then you can use the "Inverse Normal Distribution" function straightaway by:
	- **Selecting 'right' for the tail**
	- **Entering the area as 'p'**
- If your calculator does not have the tail option (left, right or centre) then:
	- Given $P(X > a) = p$
	- Use $P(X < a) = 1 P(X > a)$ to rewrite this as
		- $P(X < a) = 1-p$
	- Then use the **method for** $P(X < a)$ to find a

Q Examiner Tip

- Always check your answer makes sense
	- If $P(X < a)$ is less than 0.5 then a should be smaller than the mean
	- If $P(X < a)$ is more than 0.5 then a should be bigger than the mean
	- **A sketch will help you see this**

4.6.3 Standardisation of Normal Variables

Standard Normal Distribution

What is the standard normal distribution?

- \blacksquare The standard normal distribution is a normal distribution where the mean is 0 and the standard deviation is 1
	- It is denoted by Z
	- $Z \sim N(0, 1^2)$

Why is the standard normal distribution important?

- Any normal distribution curve can be transformed to the standard normal distribution curve by a horizontal translation and a horizontal stretch
- **Therefore we have the relationship:**

$$
Z = \frac{X - \mu}{\sigma}
$$

• Where
$$
X \sim N(\mu, \sigma^2)
$$
 and $Z \sim N(0, 1^2)$

Probabilities are related by:

$$
P(a < X < b) = P\left(\frac{a - \mu}{\sigma} < Z < \frac{b - \mu}{\sigma}\right)
$$

- This will be useful when the mean or variance is unknown
- Some mathematicians use the function $\Phi(z)$ to represent $\mathop{\rm P}(Z \! < \! z)$

z-values

 \blacksquare

What are z-values (standardised values)?

- For a normal distribution $X\!\thicksim\!\text{N}(\mu,\,\sigma^2)$ the z-value (standardised value) of an x-value tells you how many standard deviations it is away from the mean
	- If $z = 1$ then that means the x-value is 1 standard deviation bigger than the mean
	- If $z = -1$ then that means the x-value is 1 standard deviation smaller than the mean
- If the x-value is more than the mean then its corresponding z -value will be positive
- If the x-value is less than the mean then its corresponding z -value will be negative
- The z-value can be calculated using the formula:

$$
z = \frac{x - \mu}{\sigma}
$$

- This is given in the formula booklet
- z-values can be used to compare values from different distributions

Page 12 of 14

Finding Sigma and Mu

How do I find the mean (**μ**) or the standard deviation (**σ**) if one of them is unknown?

- If the **mean** or **standard deviation** of $X\!\sim\!\text{N}(\mu,\,\sigma^2)$ is **unknown** then you will need to use the standard normal distribution
- **•** You will need to use the formula
	- $z =$ $x - \mu$ $\frac{1}{\sigma}$ or its rearranged form $x = \mu + \sigma z$
- You will be given a probability for a specific value of

$$
P(X < x) = p \text{ or } P(X > x) = p
$$

- **To find the unknown parameter:**
- **STEP 1: Sketch** the normal curve
	- **Label the known value and the mean**
- **STEP 2: Find the z-value** for the given value of x
	- \blacksquare Use the **Inverse Normal Distribution** to find the value of Z such that $\text{P}(Z \! < \! z) \! = \! p$ or $P(Z > z) = p$
	- $\;\;\dotsc$ Make sure the direction of the inequality for Z is consistent with the inequality for X
	- \blacksquare Try to use lots of decimal places for the z-value or store your answer to avoid rounding errors You should use at least one extra decimal place within your working than your intended degree of accuracy for your answer
- STEP 3: Substitute the known values into $Z =$

$$
\frac{x-\mu}{\sigma} \text{ or } x = \mu + \sigma z
$$

- You will be given and one of the parameters (*μ* or *σ*) in the question
- You will have calculated z in STEP 2
- **STEP 4: Solve the equation**

How do I find the mean (**μ**) and the standard deviation (**σ**) if both of them are unknown?

- If both of them are unknown then you will be given two probabilities for two specific values of x
- The process is the same as above
	- You will now be able to calculate two z-values
	- You can form two equations (rearranging to the form $x = \mu + \sigma z$ is helpful)
	- You now have to solve the two equations simultaneously (you can use your calculator to do this)
	- Be careful not to mix up which z-value goes with which value of x

Worked example

It is known that the times, in minutes, taken by students at a school to eat their lunch can be modelled using a normal distribution with mean *μ* minutes and standard deviation *σ* minutes.

Given that 10% of students at the school take less than 12 minutes to eat their lunch and 5% of the students take more than 40 minutes to eat their lunch, find the mean and standard deviation of the time taken by the students at the school.

> Let $T \sim N(\mu, \sigma^2)$ be the time taken to eat lunch STEP I Sketch the information $P(T<12)=0.1$ $P(T>40)=0.05$ $5_{TEP} 2$ Find the corresponding 2-values using inverse normal on GDC $Z \sim N(D, 1^2)$ $P(2₂) = 0.1$ \Rightarrow $z_1 = -1.2815...$ $P(2 > z_1) = 0.05$ \Rightarrow $P(2 < z_1) = 0.95$ \Rightarrow $z_2 = 1.6448...$ 5 TFe 3 Form equations using $z = \frac{x-\mu}{r}$ or $x = \mu + \sigma z$ $12 = \mu - (1.2815)$ $40 = \mu + (1.6448...)$ 5 TEP 4 Solve equations using CDC $\mu = 24.26...$ $\sigma = 9.568...$ $Mean = 24.3 mins (3sf)$ Standard deviation = 9.57 mins (3sf)

