

Contents

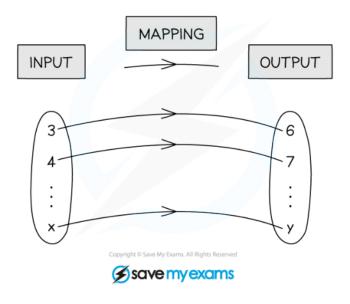
- ✤ 2.2.1 Functions
- ★ 2.2.2 Graphing Functions
- ✤ 2.2.3 Properties of Graphs

2.2.1 Functions

Language of Functions

What is a mapping?

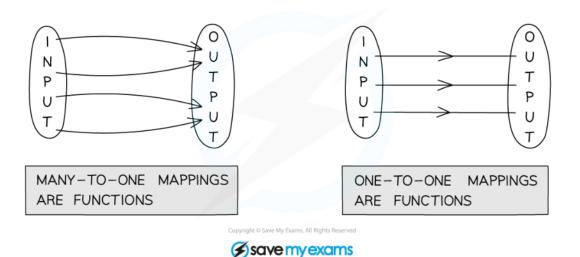
- A mapping transforms one set of values (inputs) into another set of values (outputs)
- Mappings can be:
 - One-to-one
 - Each input gets mapped to **exactly one unique** output
 - No two inputs are mapped to the same output
 - For example: A mapping that cubes the input
 - Many-to-one
 - Each input gets mapped to **exactly one** output
 - Multiple inputs can be mapped to the same output
 - For example: A mapping that squares the input
 - One-to-many
 - An input can be mapped to **more than one** output
 - No two inputs are mapped to the same output
 - For example: A mapping that gives the numbers which when squared equal the input
 - Many-to-many
 - An input can be mapped to **more than one** output
 - Multiple inputs can be mapped to the same output
 - For example: A mapping that gives the factors of the input



What is a function?

Page 2 of 28

- A function is a mapping between two sets of numbers where each input gets mapped to exactly one output
 - The output does not need to be unique
- One-to-one and many-to-one mappings are functions
- A mapping is a function if its graph passes the vertical line test
 - Any vertical line will intersect with the graph at most once



What notation is used for functions?

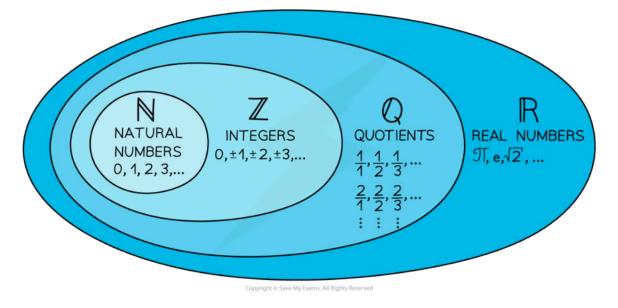
- Functions are denoted using letters (such as f, V, g, etc)
 - A function is followed by a variable in a bracket
 - This shows the input for the function
 - The letter *f* is used most commonly for functions and will be used for the remainder of this revision note
 - f(x) represents an expression for the value of the function f when evaluated for the variable x
- Function notation gets rid of the need for words which makes it **universal**
 - f = 5 when x = 2 can simply be written as f(2) = 5

What are the domain and range of a function?

- The domain of a function is the set of values that are used as inputs
- A domain should be stated with a function
 - If a domain is not stated then it is assumed the domain is all the real values which would work as inputs for the function
 - Domains are expressed in terms of the input
 - *x* ≤ 2
- The range of a function is the set of values that are given as outputs
 - The range depends on the domain
 - Ranges are expressed in terms of the output

Page 3 of 28

- $f(x) \ge 0$
- To graph a function we use the **inputs as the x-coordinates** and the **outputs as the y-coordinates**
 - f(2) = 5 corresponds to the coordinates (2, 5)
- Graphing the function can help you visualise the range
- Common sets of numbers have special symbols:
 - $\mathbb R$ represents all the real numbers that can be placed on a number line
 - $X \in \mathbb{R}$ means X is a real number
 - \mathbb{Q} represents all the rational numbers $\frac{a}{b}$ where a and b are integers and $b \neq 0$
 - \mathbb{Z} represents all the integers (positive, negative and zero)
 - **Z**⁺ represents positive integers
 - N represents the natural numbers (0,1,2,3...)



😧 Examiner Tip

- Questions may refer to "the largest possible domain"
 - this would usually be $x \in \mathbb{R}$ unless natural numbers, integers or quotients has already been stated
 - there are usually some exceptions
 - e.g. square roots; $x \ge 0$ for a function involving \sqrt{x}
 - e.g. reciprocal functions; $x \neq 2$ for a function with denominator (x-2)

Page 4 of 28

Worked example

For the function $f(x) = x^3 + 1, 2 \le x \le 10$:

a) write down the value of f(7).

Substitute x = 7 $f(7) = 7^3 + 1$ f(7) = 344

b) find the range of f(x).

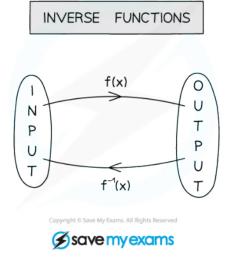
Find the values of x^3+1 when $2 \le x \le 10$ $2 \le x \le 10$ $8 \le x^3 \le 1000$ $9 \le x^3+1 \le 1001$ $9 \le f(x) \le 1001$

SaveMyExams

Inverse Functions

What is an inverse function?

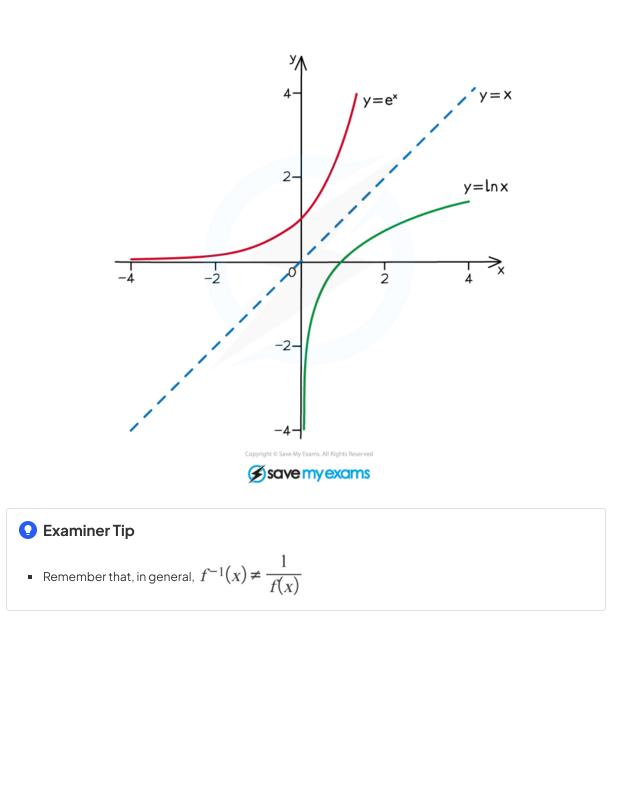
- Only one-to-one functions have inverses
- A function has an inverse if its graph passes the horizontal line test
 Any horizontal line will intersect with the graph at most once
- Given a function f(x) we denote the inverse function as $f^{-1}(x)$
- An inverse function **reverses the effect** of a function
 - f(2) = 5 means $f^{-1}(5) = 2$
- Inverse functions are used to solve equations
 - The solution of f(x) = 5 is $x = f^{-1}(5)$

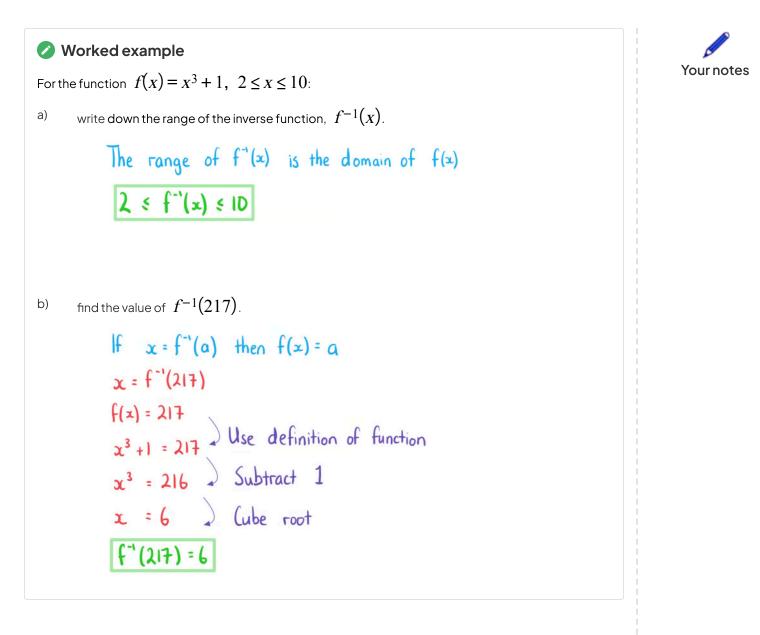


What are the connections between a function and its inverse function?

- The domain of a function becomes the range of its inverse
- The range of a function becomes the domain of its inverse
- The graph of $y = f^{-1}(x)$ is a **reflection** of the graph y = f(x) in the line y = x
 - Therefore solutions to f(x) = x or $f^{-1}(x) = x$ will also be solutions to $f(x) = f^{-1}(x)$
 - There could be other solutions to $f(x) = f^{-1}(x)$ that don't lie on the line y = x

Page 6 of 28





Piecewise Functions

What are piecewise functions?

• Piecewise functions are defined by different functions depending on which interval the input is in

• E.g.
$$f(x) = \begin{cases} x+1 & x \le 5 \\ 2x-4 & 5 < x < 10 \end{cases}$$

- The intervals for the individual functions cannot overlap
- To evaluate a piecewise function for a particular value x = k
 - Find which interval includes $\,k\,$
 - Substitute x = k into the corresponding function

Worked example

For the piecewise function

$$f(x) = \begin{cases} 2x - 5 & -10 \le x \le 10\\ 3x + 1 & x > 10 \end{cases}$$

a) find the values of f(0), f(10), f(20).

Identity the correct function to use		
x=0 is in	-10 & x & 10	\Rightarrow f(0) = 2(0) - 5 = -5
x = 10 is in	-10 e a e 10	⇒ f(10) = 2(10)-5 = 15
x=20 is in	x > 10	⇒ f(20) = 3(20) +1 = 61
f(o) = -5	f(10) = 15	f(20) = 61

b) state the domain.

Domain is the set of inputs

$$-10 \le x \le 10$$
 and $x > 10$
 $x \ge -10$

Page 9 of 28

2.2.2 Graphing Functions

Graphing Functions

How do I graph the function y = f(x)?

- A point (a, b) lies on the graph y = f(x) if f(a) = b
- The horizontal axis is used for the domain
- The vertical axis is used for the range
- You will be able to graph some functions by hand
- For some functions you will need to use your GDC
- You might be asked to graph the sum or difference of two functions

• Use your GDC to graph
$$y = f(x) + g(x)$$
 or $y = f(x) - g(x)$

• Just type the functions into the graphing mode

What is the difference between "draw" and "sketch"?

- If asked to sketch you should:
 - Show the general shape
 - Label any key points such as the intersections with the axes
 - Label the axes
- If asked to draw you should:
 - Use a pencil and ruler
 - Draw to scale
 - Plot any points accurately
 - Join points with a straight line or smooth curve
 - Label any key points such as the intersections with the axes
 - Label the axes

How can my GDC help me sketch/draw a graph?

- You use your GDC to plot the graph
 - Check the scales on the graph to make sure you see the full shape
- Use your GDC to find any key points
- Use your GDC to check specific points to help you plot the graph

Page 10 of 28

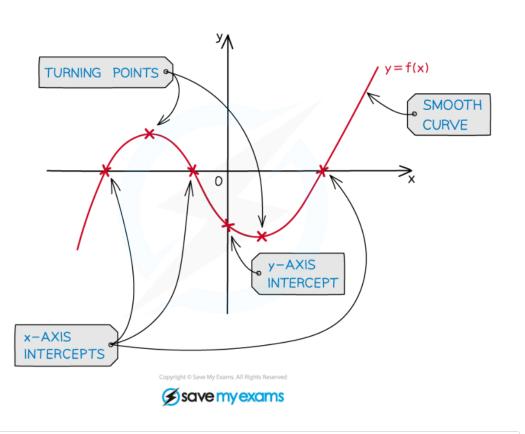
Key Features of Graphs

What are the key features of graphs?

- You should be familiar with the following key features and know how to use your GDC to find them
- Local minimums/maximums
 - These are points where the graph has a minimum/maximum for a small region
 - They are also called **turning points**
 - This is where the graph changes its direction between upwards and downwards directions
 - A graph can have multiple local minimums/maximums
 - A local minimum/maximum is not necessarily the minimum/maximum of the whole graph
 - This would be called the global minimum/maximum
 - For quadratic graphs the minimum/maximum is called the **vertex**
- Intercepts
 - y intercepts are where the graph crosses the y-axis
 - At these points x = 0
 - x intercepts are where the graph crosses the x-axis
 - At these points y = 0
 - These points are also called the zeros of the function or roots of the equation
- Symmetry
 - Some graphs have lines of symmetry
 - A quadratic will have a vertical line of symmetry
- Asymptotes
 - These are lines which the graph will get closer to but not cross
 - These can be horizontal or vertical
 - Exponential graphs have horizontal asymptotes
 - Graphs of variables which vary inversely can have vertical and horizontal asymptotes

Head to <u>www.savemyexams.com</u> for more awesome resources

Your notes



Examiner Tip

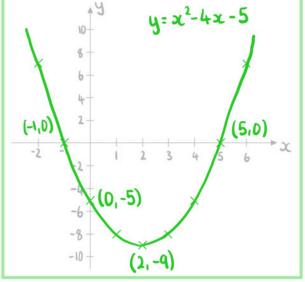
- Most GDC makes/models will not plot/show asymptotes just from inputting a function
 - Add the asymptotes as additional graphs for your GDC to plot
 - You can then check the equations of your asymptotes visually
 - You may have to zoom in or change the viewing window options to confirm an asymptote
- Even if using your GDC to plot graphs and solve problems sketching them as part of your working is good exam technique
 - Label the key features of the graph and anything else relevant to the question on your sketch

Two functions are defined by

$$f(x) = x^2 - 4x - 5$$
 and $g(x) = 2 + \frac{1}{x+1}$

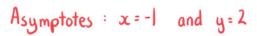
a) Draw the graph y = f(x).

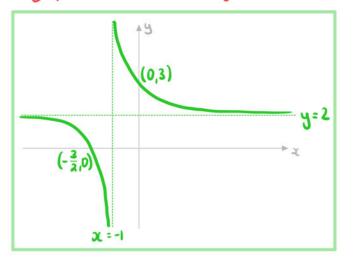
Draw means accurately Use GDC to find vertex, roots and y-intercepts Vertex = (2, -9)Roots = (-1, 0) and (5, 0)y-intercept = (0, -5)



b) Sketch the graph y = g(x).

Sketch means rough but showing key points Use GDC to find x and y-intercepts and asymptotes x-intercept = $(-\frac{3}{2}, 0)$ y-intercept = (0, 3)





Intersecting Graphs

How do I find where two graphs intersect?

- Plot both graphs on your GDC
- Use the intersect function to find the intersections
- Check if there is more than one point of intersection



Save my exams

How can l use graphs to solve equations?

- One method to solve equations is to use graphs
- To solve f(x) = a
 - Plot the two graphs y = f(x) and y = a on your GDC
 - Find the points of intersections
 - The **x-coordinates** are the **solutions** of the equation
- To solve f(x) = g(x)

Page 15 of 28

- Plot the two graphs y = f(x) and y = g(x) on your GDC
- Find the points of intersections
- The x-coordinates are the solutions of the equation
- Using graphs makes it easier to see **how many solutions** an equation will have

Examiner Tip

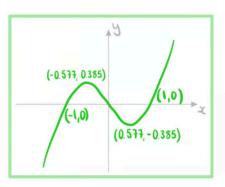
- You can use graphs to solve equations
 - Questions will not necessarily ask for a drawing/sketch or make reference to graphs
 - Use your GDC to plot the equations and find the intersections between the graphs

Worked example Two functions are defined by

$$f(x) = x^3 - x$$
 and $g(x) = \frac{4}{x}$

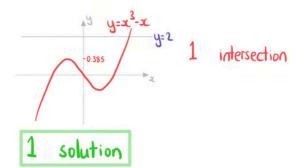
a) Sketch the graph y = f(x).

Use GDC to find max, min, intercepts

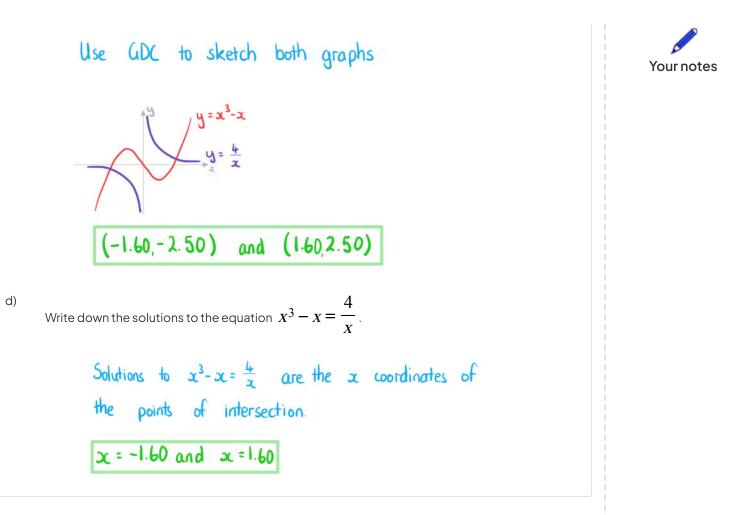


b) Write down the number of real solutions to the equation $x^3 - x = 2$.

Identify the number of intersections between $y = x^3 - x$ and y = 2



c) Find the coordinates of the points where y = f(x) and y = g(x) intersect.



F Save My Exams Head to www.savemyexams.com for more awesome resources

2.2.3 Properties of Graphs

Quadratic Functions & Graphs

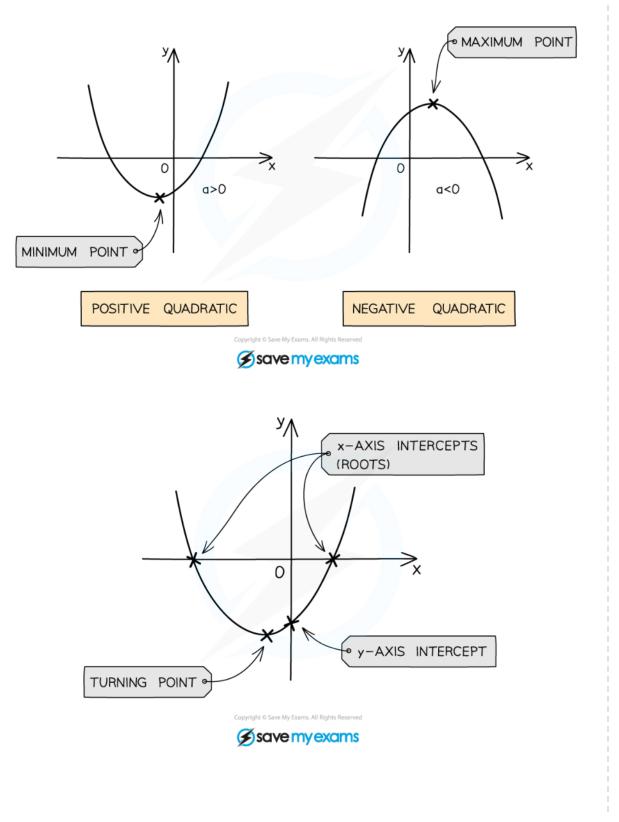
What are the key features of quadratic graphs?

- A quadratic graph is of the form $y = ax^2 + bx + c$ where $a \neq 0$.
- The value of *a* affects the shape of the curve
 - If *a* is positive the shape is **U**
 - If *a* is negative the shape is **∩**
- The y-intercept is at the point (0, c)
- The zeros or roots are the solutions to $ax^2 + bx + c = 0$
 - These can be found using your GDC or the quadratic formula
 - These are also called the x-intercepts
 - There can be 0, 1 or 2x-intercepts
- There is an **axis of symmetry** at $x = -\frac{b}{2a}$
 - This is given in your **formula booklet**
 - If there are two x-intercepts then the axis of symmetry goes through the midpoint of them
- The **vertex** lies on the axis of symmetry

• The x-coordinate is
$$-\frac{b}{2a}$$

• The y-coordinate can be found using the GDC or by calculating y when $x = -\frac{b}{2a}$

- If *a* is positive then the vertex is the minimum point
- If *a* is negative then the vertex is the maximum point

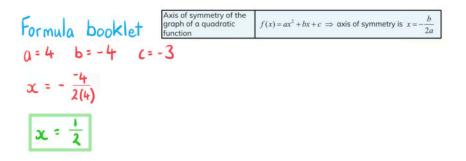


Examiner Tip

- Use your GDC to find the roots and the turning point of a quadratic function
 - You do not need to factorise or complete the square
 - It is good exam technique to sketch the graph from your GDC as part of your working

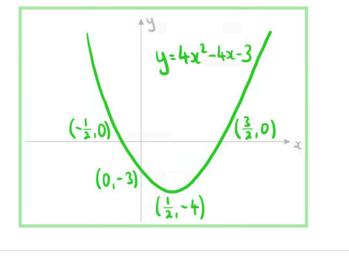
Worked example

a) Write down the equation of the axis of symmetry for the graph $y = 4x^2 - 4x - 3$.



b) Sketch the graph
$$y = 4x^2 - 4x - 3$$
.

Use GDC to find vertex, roots and y-intercepts Vertex = $(\frac{1}{2}, -4)$ Roots = $(-\frac{1}{2}, 0)$ and $(\frac{3}{2}, 0)$ y-intercept = (0, -3)



Page 21 of 28

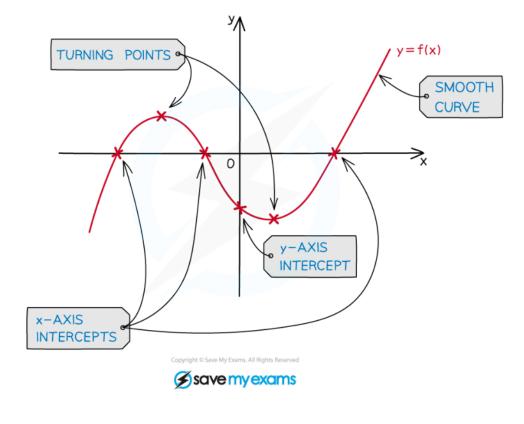
Cubic Functions & Graphs

What are the key features of cubic graphs?

- A cubic graph is of the form $y = ax^3 + bx^2 + cx + d$ where $a \neq 0$.
- The value of a affects the shape of the curve
 - If a is positive the graph goes from bottom left to top right
 - If a is negative the graph goes from top left to bottom right
- The **y-intercept** is at the point (0, d)

• The zeros or roots are the solutions to $ax^3 + bx^2 + cx + d = 0$

- These can be found using your GDC
- These are also called the *x*-intercepts
- There can be 1, 2 or 3 x-intercepts
- There is always at least 1
- There are either 0 or 2 local minimums/maximums
 - If there are 0 then the curve is **monotonic** (always increasing or always decreasing)
 - If there are 2 then one is a local minimum and one is a local maximum

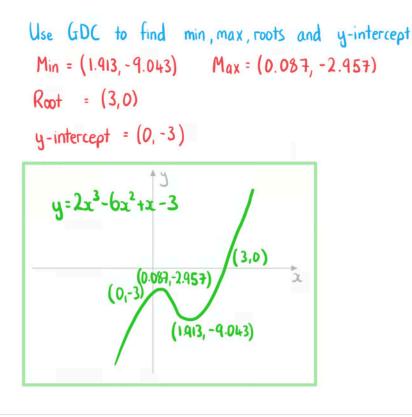


Examiner Tip

- You can use your GDC to find the roots, the local maximum and local minimum of a cubic function
- When drawing/sketching the graph of a cubic function be sure to label all the key features
 - X and Y axes intercepts
 - the local maximum point
 - the local minimum point

Worked example

Sketch the graph $y=2x^3-6x^2+x-3$.



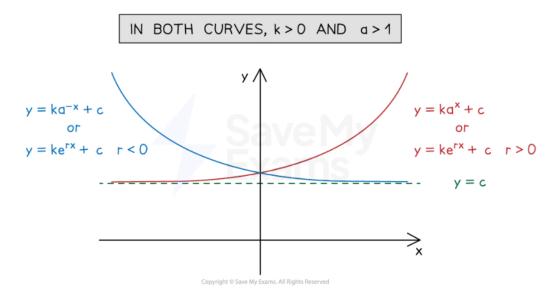
Page 23 of 28

SaveMyExams

Exponential Functions & Graphs

What are the key features of exponential graphs?

- An **exponential** graph is of the form
 - $y = ka^{x} + c$ or $y = ka^{-x} + c$ where a > 0
 - $y = ke^{rx} + c$
 - Where e is the mathematical constant 2.718...
- The **y-intercept** is at the point (0, k + c)
- There is a **horizontal asymptote** at y = c
- The value of k determines whether the graph is **above or below the asymptote**
 - If k is positive the graph is above the asymptote
 - So the range is y > c
 - If *k* is negative the graph is below the asymptote
 - So the range is y < c
- The coefficient of x and the constant k determine whether the graph is increasing or decreasing
 - If the coefficient of x and k have the same sign then graph is increasing
 - If the coefficient of x and k have **different signs** then the **graph is decreasing**
- There is at most l root
 - It can be found using your GDC

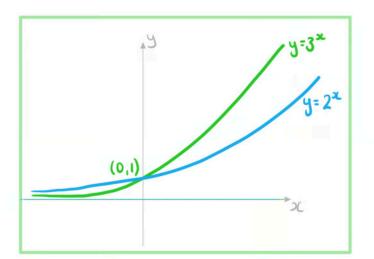


Page 24 of 28

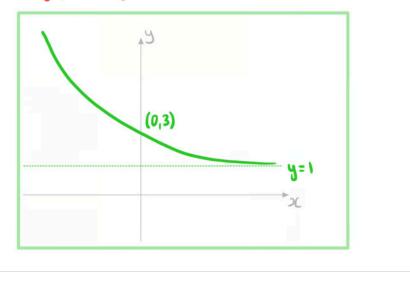
Examiner Tip

- You may have to change the viewing window settings on your GDC to make asymptotes clear
 A small scale can make it look as though the curve and an asymptote intercept
- Be careful about how two exponential graphs drawn on the same axes look
 - Particularly which one is "on top" either side of the *y*-axis

a) On the same set of axes sketch the graphs $y = 2^x$ and $y = 3^x$. Clearly label each graph.



- b) Sketch the graph $y = 2e^{-3x} + 1$.
 - Use GDC to find intercept and asymptote y-intercept = (0,3)



Page 26 of 28

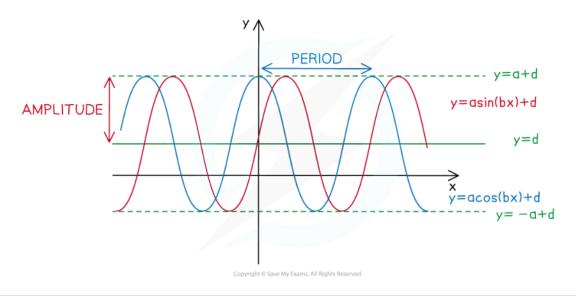
Sinusoidal Functions & Graphs

What are the key features of sinusoidal graphs?

- A **sinusoidal** graph is of the form
 - $y = a\sin(bx) + d$
 - $y = a\cos(bx) + d$
- The y-intercept is at the point
 - (0, d) for $y = a\sin(bx) + d$
 - (0, a+d) for $y = a\cos(bx) + d$
- The **period** of the graph is the length of the interval of a full cycle

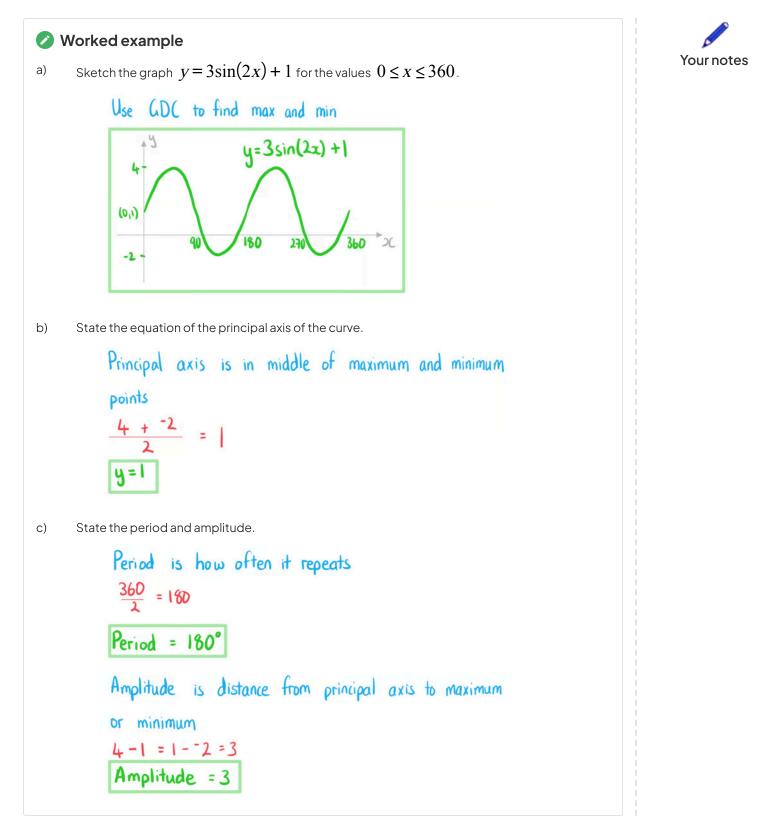
This is
$$\frac{1}{b}$$

- The **maximum value** is y = a + d
- The **minimum value** is *y* = -*a* + *d*
- The principal axis is the horizontal line halfway between the maximum and minimum values
 This is y = d
- The **amplitude** is the vertical distance from the principal axis to the maximum value
 - This is a



Examiner Tip

- Pay careful attention to the angles between which you are required to use or draw/sketch a sinusoidal graph
 - e.g. 0°≤x≤360°



Page 28 of 28