

7.4 Future Resilience & Adaptation

Contents

- ★ 7.4.1 Hazard & Disaster Trends
- ✤ 7.4.2 Hazard Adaptation
- ✤ 7.4.3 Management Strategies

7.4.1 Hazard & Disaster Trends

Hazard & Disaster Trends & Future Projections

Global disaster trends

- The number of recorded disasters has increased significantly since 1960
- There are a number of reasons for this, including:
 - Increased population the world's population has grown from 3 billion to over 8 billion since 1960:
 - This means more people are likely to be impacted by any hazard event
 - Increased population density in urban and coastal areas increases the vulnerable population
 - Increased monitoring and reporting means more hazard events are recorded
- Most of the increase has been the result of floods and extreme weather

Recorded global disasters 1900-2022

Recorded global disasters 1900-2022

Geophysical hazard trends

- The number of tectonic disasters has **fluctuated** since 1960 but has generally remained steady
- The slight increase in the number of earthquake disasters does not mean there have been more earthquakes or higher magnitude earthquakes. It results from:
 - Greater **urbanisation** in seismic zones, which has led to higher population densities and increased building density
 - Population growth, which means more people are living in earthquake-prone regions
 - Population growth being focussed in some of the least developed countries, which are also the most vulnerable due to:

Page 2 of 15

SaveMyExams

SaveMyExams

Your notes

7.4.2 Hazard Adaptation

Land Use Zoning

Geophysical hazard adaptation

- There are different levels of response to geophysical hazards; these are:
 - Individual
 - Community
 - National
 - International

Response and hazard management cycle

• The hazard management cycle is a model that shows how the events of one hazard event inform planning and preparation for the next hazard event

Hazard management cycle

- The response to a hazard will depend on a range of factors, including:
 - Past hazards and experiences

Page 5 of 15

SaveMyExams

- Level of development
- Technology
- Hazard perception
- The type and magnitude of the hazard
- Park's model shows hazard response and its link to people's quality of life

Park's model of hazard response

 In LICs, rapid urban growth means that illegal settlements may be built in high-risk areas due to a lack of awareness

Land use zoning in Christchurch, New Zealand

Page 6 of 15

Your notes

- In the red zones, rebuilding is not permitted
- Properties and land in the red zones were bought by the government:

Page 7 of 15

- Approximately 125 households opted to stay (2%)
- These households no longer have insurance, postal or bus services
- The land is now managed by Land Information New Zealand (LNZ) and much of it has been turned into parkland

Head to <u>www.savemyexams.com</u> for more awesome resources

Personal Resilience

- In addition to government planning, people can take individual and community actions. These include:
 - Increased preparedness
 - Use of insurance
 - Adoption of new technology

Increased preparedness

- Drills educate people about what to do during a hazard event. These increase resilience because:
 - People are more likely to take actions that will protect them during and after the event
 - In 2023 over 56.5 million people worldwide participated in the Great ShakeOut earthquake drills
- Building codes
 - Adherence to building regulations when constructing buildings decreases the number of buildings that collapse
 - In LICs people are less likely to follow building regulations due to:
 - Lack of education regarding the importance of building regulations
 - Cost of following building regulations
 - Lack of enforcement of the building regulations

Use of insurance

- Insurance increases resilience because:
 - Payouts are usually faster and larger than government assistance
 - This increases the speed of recovery and the ability to rebuild/repair
 - It may encourage people to prepare and retrofit buildings to reduce the cost of insurance

Earthquake insurance

- Earthquake insurance covers damage to property and possessions as well as living expenses for temporary accommodation
- Standard insurance does not usually include coverage for earthquake events
- The cost of earthquake insurance increases with the risk:
 - In California the cost is high as the state is located on multiple fault lines
- The cost is also affected by the:
 - Age of the building newer buildings are built of better materials and can be earthquake-resistant
 - Number of stories taller buildings are at greater risk of collapse
 - Materials used wood frames are more flexible and less likely to collapse
 - Foundations raised foundations and foundations in sandy soil reduce the risk of collapse
- In Japan, residents can claim tax deductions on earthquake insurance, which reduces the cost

Advantages and disadvantages of earthquake insurance

Advantages	Disadvantages
Property damage and loss of	The cost is higher if you are in a high-
possessions are covered	risk area; this can make it unaffordable
In low-risk areas, the cost of insurance is lower	for people on lower incomes

Page 9 of 15

The cost of alternative	The excess (the amount paid by the
accommodation is covered if you are	insured person towards the costs) is
not able to return to your property	higher for earthquake insurance – it
	may be a percentage of the value of
	the property

7.4.3 Management Strategies

Pre-event Management Strategies - Volcanoes

- There are signs warning of an eruption before most volcanic eruptions
- Pre-event management of volcanoes includes monitoring these signs so that people can be evacuated and warned
- Volcanologists (scientists who study volcanoes) monitor changes using GPS, tilt meters, satellites, seismometers and gas detection
- Signs of an eruption include:
 - Magma rising, which can be detected by heat sensors and satellites
 - Changes in surface level as rising magma causes bulges
 - Increased emissions of sulphur dioxide and other gases
 - Increased seismic activity caused by magma movement detected by seismometers

Methods of monitoring volcanoes

Methods of monitoring volcanoes

Improved prediction of volcanic eruptions has led to a decrease in death tolls

Diversion channels

Page 11 of 15

- Lava flows can be managed by constructing diversion channels
- These are used to direct the flow away from economically valuable areas or areas of population

Pre-event Management Strategies - Earthquakes

- It is not possible to predict earthquakes:
 - An understanding of tectonic activity can help scientists identify areas most at risk
 - Over 90% of earthquakes occur on or near plate boundaries
 - Building design and construction can be used to reduce the impact

Earthquake resistant building design

- Hazard mapping can also be used to predict areas at highest risk
- Land use zoning can then ensure that valuable buildings are not built in these areas

Page 13 of 15

Tsunami

- For earthquake-induced tsunamis, scientists are unable to predict the earthquake itself
- When the earthquake happens, this will be detected by the global network of seismometers, which will locate the epicentre of the earthquake
 - Ocean monitoring technology can then be used to detect a tsunami
 - Warnings can then be issued to coastal areas that may be affected

Tsunami warning system

Tsunami warning system

- Sea walls have also been built to reduce the impact of tsunami
 - After the 2011 Tokohu tsunami in Japan, the height of the sea wall was increased to over almost 15 meters in places

Page 14 of 15

Pre-event Management Strategies - Mass Movement

- The management of mass movement needs to control the factors that affect the risks, including:
 - Slope angle and stability
 - Drainage
 - Human activities
 - Erosion

Terracing or re-grading of slopes

• Terracing or re-grading reduces the angle of the slope

Revegetation

- Stabilises the slope material, increasing the amount of stress that the slope can withstand
- Reduces slope saturation by take-up of water through the roots and increased interception
- Decreases erosion, which affects the stability of the slope

Improving drainage

- Water makes slopes more unstable
- Improved drainage reduces saturation of the slope
- This reduces the weight of the material and therefore the risk of mass movement

Stabilisation structures

- Use of pinning:
 - Steel rods are drilled into the slope to support the weight of the slope
 - Bolts can also be used to transfer the weight from the surface to the interior of the slope
- Pinning is often used in combination with netting, which contains any falling material
- Shotcrete shoring is when a mixture of cement and aggregate is applied to the slope; this strengthens the slope and reduces erosion
- Retaining walls and gabions, which hold the slope in place

Page 15 of 15

