

1.2 Exponentials & Logs

Contents

- ✤ 1.2.1 Introduction to Logarithms
- ✤ 1.2.2 Laws of Logarithms
- ✤ 1.2.3 Solving Exponential Equations

1.2.1 Introduction to Logarithms

Introduction to Logarithms

What are logarithms?

- A logarithm is the inverse of an exponent
 - If $a^x = b$ then $\log_a(b) = x$ where $a > 0, b > 0, a \neq 1$
 - This is in the formula booklet
 - The number *a* is called the **base** of the logarithm
 - Your GDC will be able to use this function to solve equations involving exponents
- Try to get used to 'reading' logarithm statements to yourself
 - $\log_a(b) = x$ would be read as "the power that you raise a to, to get b, is x"
 - So $\log_5 125 = 3$ would be read as "the power that you raise 5 to, to get 125, is 3"
- Two important cases are:
 - $\ln x = \log_{2}(x)$
 - Where e is the mathematical constant 2.718...
 - This is called the **natural logarithm** and will have its own button on your GDC
 - $\log x = \log_{10}(x)$
 - Logarithms of **base 10** are used often and so abbreviated to **log x**

Why use logarithms?

- Logarithms allow us to solve equations where the exponent is the unknown value
 - We can solve some of these by inspection
 - For example, for the equation $2^x = 8$ we know that x must be 3
 - Logarithms allow use to solve more complicated problems
 - For example, the equation $2^x = 10$ does not have a clear answer
 - Instead, we can use our GDCs to find the value of $\log_2 10$

😧 Examiner Tip

• Before going into the exam, make sure you are completely familiar with your GDC and know how to use its logarithm functions

SaveMyExams

Head to <u>www.savemyexams.com</u> for more awesome resources

1.2.2 Laws of Logarithms

Laws of Logarithms

What are the laws of logarithms?

- Laws of logarithms allow you to simplify and manipulate expressions involving logarithms
 - The laws of logarithms are equivalent to the **laws of indices**
- The laws you need to know are, given a, x, y > 0:

$$\log_a xy = \log_a x + \log_a y$$

• This relates to $a^x \times a^y = a^{x+y}$

$$\log_a \frac{x}{y} = \log_a x - \log_a y$$

- This relates to $a^x \div a^y = a^{x-y}$
- $\log_a x^m = m \log_a x$
 - This relates to $(a^x)^y = a^{xy}$
- These laws are in the formula booklet so you do not need to remember them
 - You must make sure you know how to use them

Useful results from the laws of logarithms

• Given a > 0, $a \neq 1$

$$\log_{a} 1 = 0$$

- This is equivalent to $a^0 = 1$
- If we substitute b for a into the given identity in the formula booklet

Page 5 of 14

• $a^x = b \iff \log_a b = x$ where $a > 0, b > 0, a \neq 1$

$$a^x = a \Leftrightarrow \log_a a = x$$
 gives $a^1 = a \Leftrightarrow \log_a a = 1$

This is an important and useful result

- Substituting this into the third law gives the result
 - $\log_a a^k = k$
- Taking the inverse of its operation gives the result

$$\bullet a^{\log_a x} = x$$

From the third law we can also conclude that

$$\log_a \frac{1}{x} = -\log_a x$$

Copyright © Save My Exams. All Rights Reserved

- These useful results are **not in the formula booklet** but can be deduced from the laws that are
- Beware...
 - $\ldots \log_a(x+y) \neq \log_a x + \log_a y$
- These results apply to $\ln x (\log_e x)$ too
 - Two particularly useful results are
 - $-\ln e^x = x$

Page 6 of 14

• $e^{\ln x} = x$

- Laws of logarithms can be used to ...
 - simplify expressions
 - solve logarithmic equations
 - solve exponential equations

Examiner Tip

- Remember to check whether your solutions are valid
 - log (x+k) is only defined if x > -k
 - You will lose marks if you forget to reject invalid solutions

Worked example

a)

Write the expression $2\log 4 - \log 2$ in the form $\log k$, where $k \in \mathbb{Z}$.

Using the law
$$\log_a x^m = m \log_a x$$

 $2\log_4 = \log_4^2 = \log_16$
 $2\log_4 - \log_2 = \log_4^2 - \log_2 2$
 $= \log_16 - \log_2 2$
Using the law $\log_a \frac{x}{y} = \log_a x - \log_a y$
 $\log_16 - \log_2 2 = \log_\frac{16}{2} = \log_8$
 $2\log_4 - \log_2 2 = \log_\frac{16}{2} = \log_8$

b) Hence, or otherwise, solve $2 \log 4 - \log 2 = -\log \frac{1}{x}$.

SaveMyExams

Head to www.savemyexams.com for more awesome resources

Change of Base

Why change the base of a logarithm?

- The laws of logarithms can only be used if the logs have the same **base**
 - If a problem involves logarithms with different bases, you can change the base of the logarithm and then apply the laws of logarithms
- Changing the base of a logarithm can be particularly useful if you need to evaluate a log problem without a calculator
 - Choose the base such that you would know how to solve the problem from the equivalent exponent

How do I change the base of a logarithm?

• The formula for changing the base of a logarithm is

$$\log_a x = \frac{\log_b x}{\log_b a}$$

- This is in the formula booklet
- The value you choose for *b* does not matter, however if you do not have a calculator, you can choose *b* such that the problem will be possible to solve

😧 Examiner Tip

- Changing the base is a key skill which can help you with many different types of questions, make sure you are confident with it
 - It is a particularly useful skill for examinations where a GDC is not permitted

Page 10 of 14

SaveMyExams

Head to <u>www.savemyexams.com</u> for more awesome resources

Worked example

By choosing a suitable value for b, use the change of base law to find the value of $\log_8 32$ without using a calculator.

Change of base law:
$$\log_{a} x = \frac{\log_{b} x}{\log_{b} a}$$

 $log_{8} 32^{a}$
 $2^{3} = 8$
Chaose $b = 2$ to allow for a solution by inspection
 $\log_{8} 32 = \frac{\log_{2} 32}{\log_{2} 8} = \frac{5}{3}$
 $\log_{8} 32 = |\frac{2}{3}|$

Your notes

1.2.3 Solving Exponential Equations

Solving Exponential Equations

What are exponential equations?

- An exponential equation is an equation where the unknown is a power
 - In simple cases the solution can be spotted without the use of a calculator
 - For example,

$$5^{2x} = 125$$
$$2x = 3$$
$$x = \frac{3}{2}$$

- In more complicated cases the laws of logarithms should be used to solve exponential equations
- The change of base law can be used to solve some exponential equations without a calculator
 - For example,

$$27^{x} = 9$$
$$x = \log_{27}9$$
$$= \frac{\log_{3}9}{\log_{3}27}$$
$$= \frac{2}{3}$$

How do we use logarithms to solve exponential equations?

- An exponential equation can be solved by taking logarithms of both sides
- The laws of indices may be needed to rewrite the equation first
- The laws of logarithms can then be used to solve the equation
 - In (log_e) is often used
 - The answer is often written in terms of In
- A question my ask you to give your answer in a particular form
- Follow these steps to solve exponential equations
 - STEP 1: Take logarithms of both sides
 - STEP 2: Use the laws of logarithms to remove the powers
 - STEP 3: Rearrange to isolate *x*
 - STEP 4: Use logarithms to solve for x

What about hidden quadratics?

Page 12 of 14

- Look for hidden squared terms that could be changed to form a quadratic
 - In particular look out for terms such as
 - $4^x = (2^2)^x = 2^{2x} = (2^x)^2$
 - $e^{2x} = (e^2)^x = (e^x)^2$

Examiner Tip

- Always check which form the question asks you to give your answer in, this can help you decide how to solve it
- If the question requires an exact value you may need to leave your answer as a logarithm

Solve the equation $4^x - 3(2^{x+1}) + 9 = 0$. Give your answer correct to three significant figures.

Spot the hidden quadratic: $4^{\infty} = (2^{2})^{\infty} = (2^{\infty})^{2}$ By the laws of indices $2^{x+1} = 2^x \times 2^{1}$ $= 2 \times 2^{\infty}$ $(2^{\infty})^2 - 3(2^{\infty+1}) + 9 = 0$ $(2^{\infty})^2 - 3 \times 2 \times 2^{\infty} + 9 = 0$ $(2^{\infty})^2 - 6 \times 2^{\infty} + 9 = 0$ Let $u = 2^{\infty}$ $u^2 - 6u + 9 = 0$ (u - 3)(u - 3) = 0 $u = 3 \therefore 2^{\infty} = 3$ Solve the exponential equation $2^{\infty} = 3$ Step 1: Take Logarithms of both sides : $\ln(2^{x}) = \ln(3)$ Step 2: Use the law $\log_a x^m = m \log_a x x \ln 2 = \ln 3$ Step 3: Rearrange to isolate x $\infty = \frac{\ln 3}{\ln 3}$ Step 4: Solve $\infty = \frac{\ln 3}{\ln 2} = 1.584...$ $\infty = 1.58$ (3s.f.)

