

5.2 Interactions Between Oceans & Coastal Places

Contents

- ★ 5.2.1 Physical Influences on Coastal Landscapes
- ★ 5.2.2 Coastal Processes
- 券 5.2.3 Coastal Landforms
- ★ 5.2.4 Coastlines
- ✤ 5.2.5 Sand Dunes

5.2.1 Physical Influences on Coastal Landscapes

Waves & Tides

Waves

- Waves form our coastlines through erosion, deposition and transportation
- Wind causes waves to move over the **surface** of the sea:
 - Wind creates friction, causing the water to ripple
 - These ripples grow into waves
- Waves can have different **energy levels** depending on:
 - Wind strength
 - The length of time the wind blows
 - The fetch (the distance the wave has travelled)
- If the fetch is larger, the wave will be more powerful
- If the wind is powerful and blows over a longer period, the wave will be larger
- The **swash** is when a wave moves up the beach
- The **backwash** is when the wave pulls back out to the ocean
- Waves slow down as they reach a coastline and the water becomes shallower:
 - The bottom of the wave experiences friction with the seabed below
 - The top part of the wave (crest) gains momentum, pushing over the bottom of the wave
 - This is when the wave will **break**

Diagram of a wave

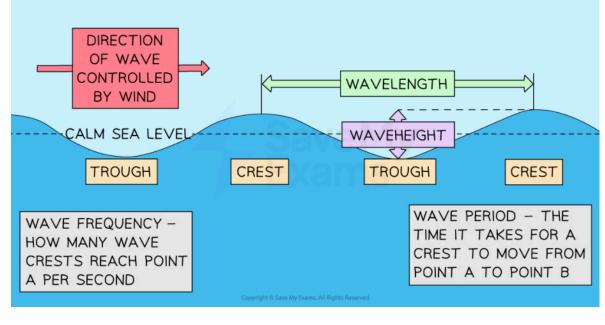


Diagram of a wave

Page 2 of 37

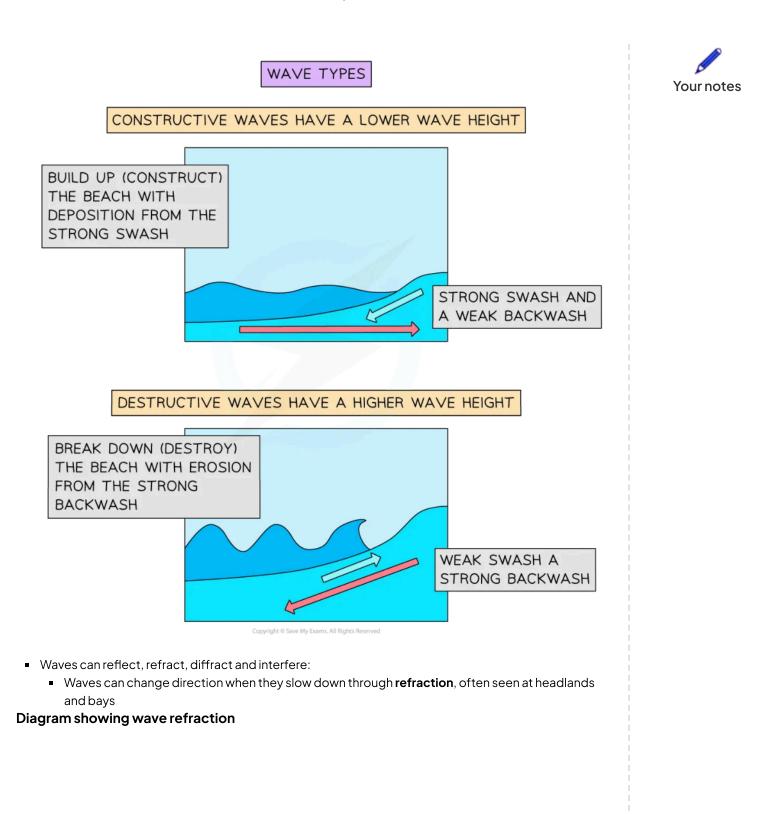
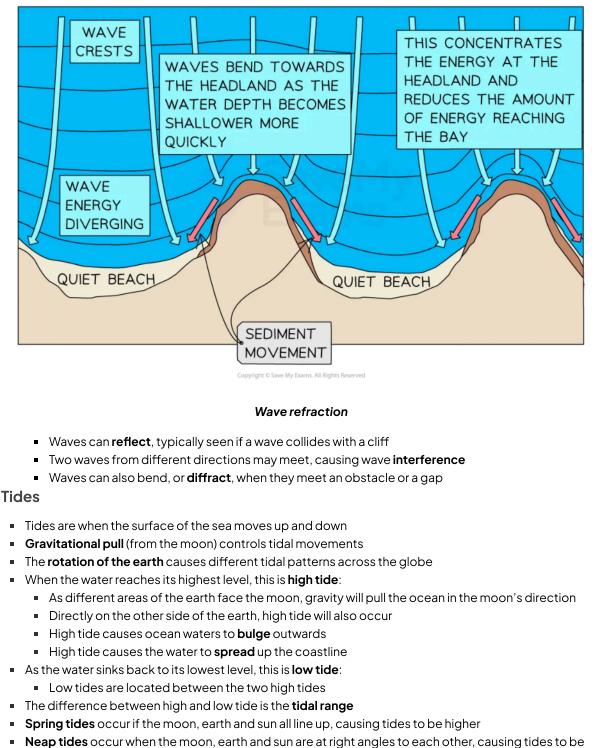
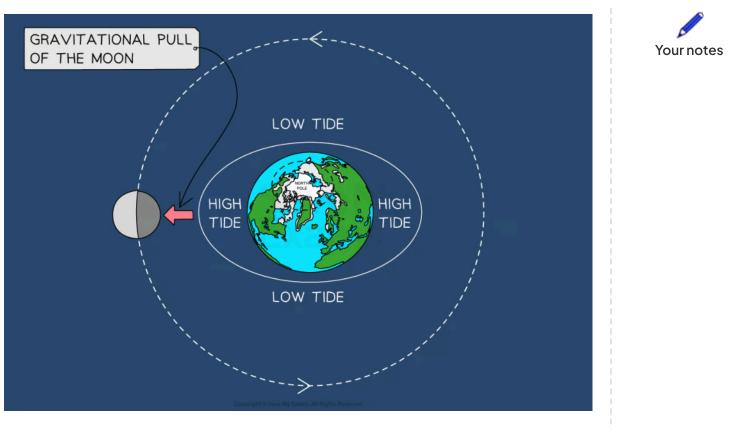

- There are two types of waves:
 - Constructive waves constructive waves construct or build up beaches through deposition processes
 - **Destructive** waves destructive waves destroy the coastline through erosion processes

Table comparing constructive and destructive waves


	Constructive Wave	Destructive Wave
Swash	Strong	Weak
Backwash	Weak	Strong
Wavelength	Long with low height	Short with high height
Frequency	Low (6-8 per minute)	High (10–12 per minute)
Type of beach	Sandy - depositional	Shingle - erosional
Fetch	Small fetch	large fetch

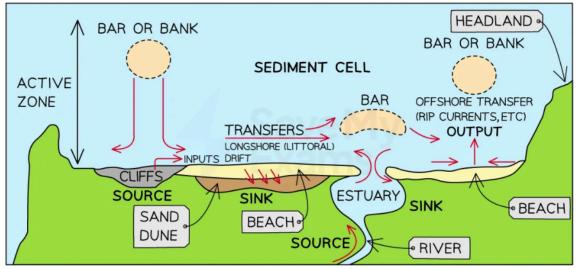
SaveMyExams


Your notes

 Neap tides occur when the moon, earth and sun are at right angles to each other, causing tides to lower

Tidal differences as the earth rotates

Page 5 of 37


Tidal differences as the earth rotates

Page 6 of 37

Sediment Supply

- Sediment is the material on a coastline, e.g. sand, shells, silt
- The coast is a **system** of inputs, transfers and outputs of sediment:
 - Sediment cells (littoral cells) are areas of coastline where this system takes place
 - Sediment moves around in each cell
 - Each cell is typically a **closed system** that recycles sediment

Diagram of a sediment cell

Copyright © Save My Exams. All Rights Reserved

A sediment cell

- Sediment supplies and sources (**inputs**) come from:
 - Rivers
 - Erosional processes and mass movement
 - Onshore currents
 - Subaerial processes (weathering)
 - Aeolian processes (wind)
 - Biological processes (particles from dead marine life)
 - Human activity (hard and soft engineering)
- Sediment transfers occur along the coastline by:
 - Longshore drift
 - Swash and backwash
 - Wind
 - Ocean and tidal currents
- **Output** of sediment occurs through:
 - Deposition. It produces sinks (depositional landforms)
 - Ocean currents

Sediment cells of England and Wales

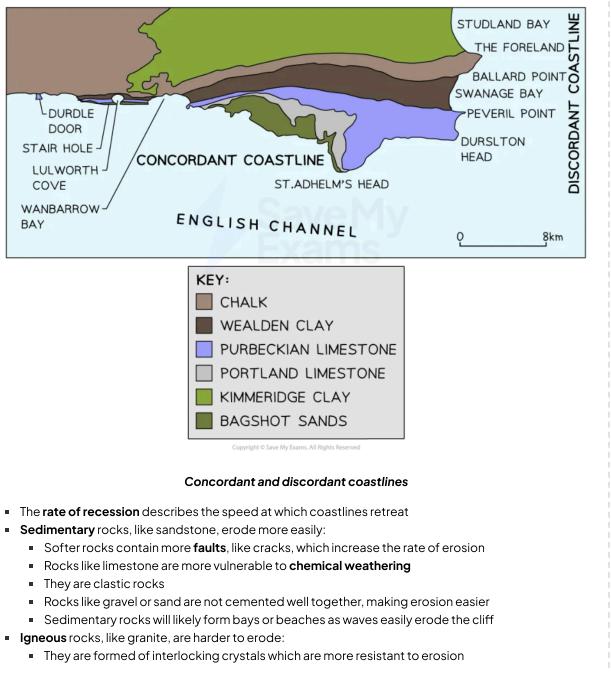
- The **sediment budget** is the balance of sediment that enters and exits the system
 - If more sediment enters than exits the system, this will produce a **positive** sediment budget
 - A negative sediment budget occurs when more sediment exits than enters the system

Page 8 of 37

F Save My Exams Head to <u>www.savemyexams.com</u> for more awesome resources

- The system is in **equilibrium** when inputs and outputs are in balance. Sediment moves equally through the system
- Changes to inputs and outputs affect the sediment budget
- **Positive and negative feedback loops** can alter the equilibrium by heightening and balancing changes within the system:
 - **Positive feedback** can cause instability, moving the system out of equilibrium
 - **Negative feedback** brings the system back into equilibrium

Examiner Tip


Think about what could impact the equilibrium of the sediment budget. For example, climate change, weather differences and human activity like coastal management.

Coastal Lithology

- Lithology is the study of the physical characteristics of rocks
- **Discordant** coastlines contain both hard and soft rock types:
 - Discordant coastlines have more bays and headlands
- **Concordant** coastlines contain one type of rock

Map showing concordant and discordant coastlines on the south coast of England

Page 10 of 37

SaveMyExams

- There are fewer weaknesses and faults
- Headlands will more likely to form due to erosion resistance
- Metamorphic rocks are not eroded as easily:
 - They contain **crystals**, which reduce the rate of erosion
- The type of rock on a cliff face can also impact the shape of the cliff

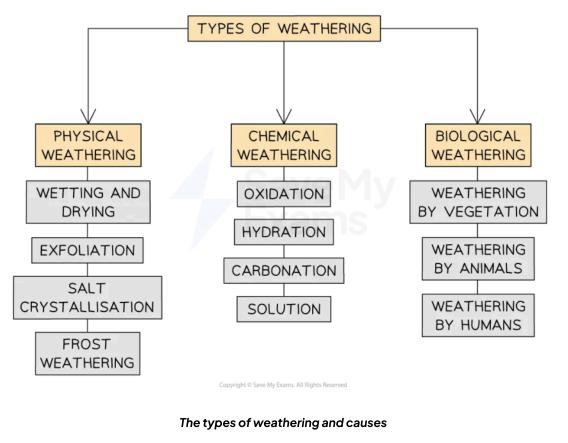
Table showing rock type and its effect on cliff shape

	Hard Rock	Soft Rock
Shape of cliff	High and steep	Generally lower and less steep
Cliff face	Bare rock and rugged	Smoother, evidence of slumping
Foot of cliff	Boulders and rocks	Few rocks; some sand and mud

Coastal Vegetation

- Vegetation is vital for **stabilising** coastlines
- Vegetation reduces the coastline's vulnerability to erosion and increases deposition:
 - Roots of plants can **bind** the sediment together
 - Stems and leaves protect the ground
 - Plants **shelter** the sediment from the wind
 - Plants can help to **slow down** wind and water, increasing deposition
 - Once vegetation dies, organic matter is **recycled** back into the soil
 - Vegetation protects coastal landforms like sand dunes, salt marshes and mangroves
- Coastlines are harsh environments for vegetation e.g. high salt levels
- Hardy, adaptable plants colonise areas like this
- If a landform has existed for a long time, plants will more likely colonise
- Plant succession is the colonisation and development of new plants:
 - Pioneer plants **colonise** in bare environments, e.g. sediment
 - They help to **stabilise** the sediment and improve the fertility of the soil
 - Other species can then begin to colonise
 - As more species colonise, the **hardier** they become
 - The climax community settles at the end of the succession

5.2.2 Coastal Processes


Sub-aerial processes

- Sub-aerial processes occur on the land
- These processes shape our coastlines

Weathering

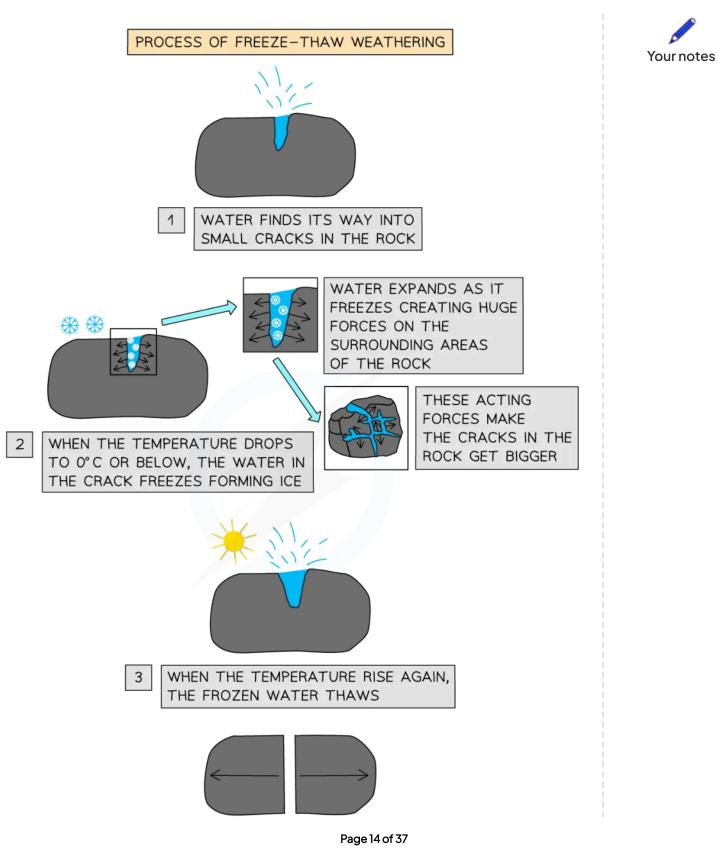
- When weathered, rocks disintegrate or break down in situ
- Weathering impacts **sediment** on the coastline
- Weathering also influences the **rate of recession**
- The different types of weathering are:
 - Mechanical (physical) rocks fracture and break into pieces
 - Chemical chemical reactions cause rocks to degrade
 - Biological animals and plants cause rocks to weaken

The types of weathering and causes

Mechanical weathering

Freeze-thaw weathering occurs when water finds its way into the cracks in the rock

Page 12 of 37



- Water freezes and expands (roughly 10%), increasing the pressure on the surrounding rock
- Water then thaws and moves further down into the gaps and cracks
- As this process repeats, the rock will eventually give way and break
- This typically occurs during **colder** months

The process of freeze-thaw weathering

^{© 2015–2024 &}lt;u>Save My Exams, Ltd.</u> · Revision Notes, Topic Questions, Past Papers

4 THIS CYCLE OF FREEZING AND THAWING OCCURS MANY TIMES, UNTIL EVENTUALLY A FRAGMENT OF THE ROCK BREAKS AWAY COMPLETELY

Copyright © Save My Exams. All Rights Reserved

The process of freeze-thaw weathering

Salt Crystallization

- Salt crystals can enter cracks in the rock through **deposition** or **evaporation**
- Water enters cracks at high tide and evaporates at low tide
- This leaves salt crystals behind, which build up over time
- The increase in salt can put pressure on the surrounding rock, causing it to break

Wetting and drying

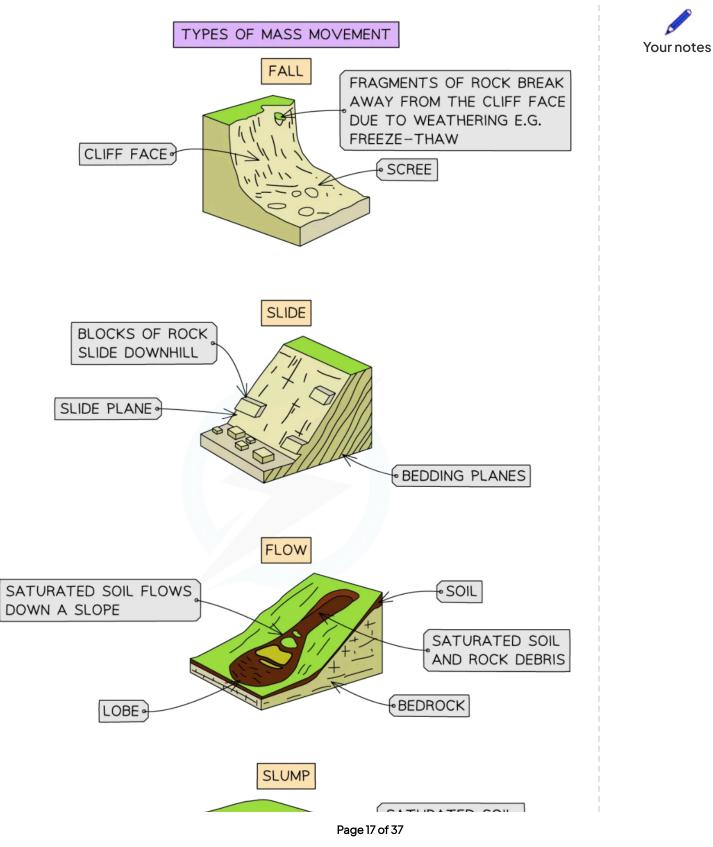
- This process typically affects clay-type rocks
- Rocks get wet during high tide and **expand**
- As they dry, they **contract**
- As this process repeats, the rock can fragment and break

Chemical weathering

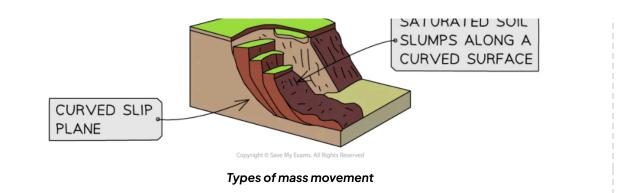
- **Oxidation** Oxygen can react with other chemicals, e.g. calcium to form **iron oxide**. This causes the rock to degrade
- Hydration rocks absorb minerals, which can create crystals. Just like salt crystals, they cause the rock to break
- Carbonation as carbon dioxide reacts with seawater, it produces carbonic acid, which damages the rock
- Solution some minerals can dissolve when they come into contact with water, causing the rock to break down. This is commonly seen with acid rain

Biological weathering

- Animals, vegetation (and even humans) can cause rocks to break down
 - Tree **roots** can grow from small cracks in the rock and exert pressure. This causes the rock to break
 - Some creatures **bore** into rocks, causing weaknesses
 - Some plants and animals can produce **acids** that wear away the rock


Mass movement

- Mass movement moves material downwards due to the force of gravity
- There are many different types of mass movement
- Factors determining the amount of mass movement include:
 - Sediment type or size
 - Amount of water
 - Presence of vegetation
 - **Speed** of movement (how steep the slopes are)
- Soil creep


Page 15 of 37

- This is a very slow process
- This occurs on **gentle** slopes
- The material expands and contracts when in contact with water or ice
- This expansion moves the material downwards
- Earth flows and mudflows
 - Soil moves downhill when it has become **saturated** with water
 - Earth flows act like a **liquid**
 - This leaves behind a **depression** at the top and a **lobe** shape at the bottom
 - Mudflows occur when the material is **extremely wet**
- Landslides
 - A large chunk of material moves down a slope
 - It splits into smaller pieces of material when it reaches the bottom of a slope
 - This is very common when slopes are **steep**
- Slumping
 - Rotational slumping or slip is very common at the coastline
 - The material moves as a single piece downwards, leaving behind a curved gap
 - It occurs when weaker rocks or rocks made of unconsolidated materials become saturated with water
- Rockfall
 - Rocks can fall downwards at steeper slopes
 - This is typically caused by freeze-thaw weathering
 - It leaves scree behind at the base

Types of mass movement

^{© 2015-2024} Save My Exams, Ltd. Revision Notes, Topic Questions, Past Papers

Examiner Tip

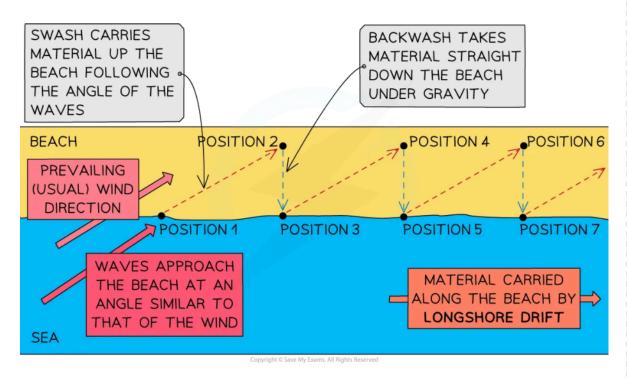
To help you remember the different types of mass movement, try splitting them up into these four categories: fall, slide, flow and slump.

Page 18 of 37

SaveMyExams

Wave processes

- Wave processes transfer, erode and deposit material at the coast
- Wave processes are responsible for shaping the coastline


Littoral drift

- Littoral drift is also known as **longshore drift**
- This is the main process in which waves **transport** and **deposit** sediment
- Waves hit the coastline at an **angle** due to **prevailing wind** forces
- Swash carries material up the shore and backwash brings the material back towards the sea at a right angle (gravity)
- Material moves along the beach through the wave processes of:
 - Traction large rocks roll along the seafloor
 - Saltation smaller rocks or pebbles bounce on the seafloor
 - Suspension small particles of sediment float in the water
 - Solution the water carries dissolved material
- Longshore (littoral) drift creates depositional landforms along the coast, such as **spits**

😧 Examiner Tip

make sure you know how the process of littoral drift works. You may be asked to describe what kind of landforms it creates!

The process of littoral drift

Page 19 of 37

The process of littoral drift

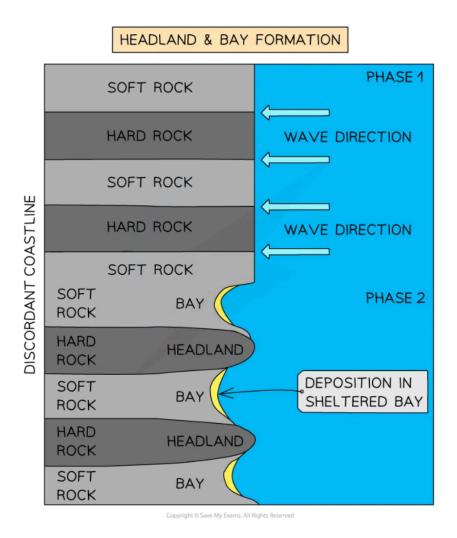
Hydraulic action

- **Destructive waves** with **high energy** can cause the rock to break from the impact
- Destructive waves can also force air into the cracks and faults in the rock
- Changes in air pressure cause rocks to crack
- This can cause pieces of rock to break off as the cycle repeats

Abrasion

- Waves carry all types and sizes of sediment
- Destructive, high-energy waves throw this sediment against the rock at the coastline
- As this process repeats, chunks of rock break away
- It mirrors **sandpaper**, where smaller pieces of sediment wear away the rock
- Softer sedimentary rock is more affected by abrasion

5.2.3 Coastal Landforms


Erosion Landforms

Headlands and bays

- Headlands and bays form at discordant coastlines:
 - Different types of rock alternate along the cliff face
 - The rock runs **perpendicular** to incoming waves
- Softer rocks, like clays, erode more easily than harder rocks, like chalk
- **Bays** form where softer rock is prevalent due to wave erosion:
 - Bays are curved, partly enclosed inlets of water
 - Bays often contain beaches
- Harder, more resistant rocks leave **headlands** sticking out at sea

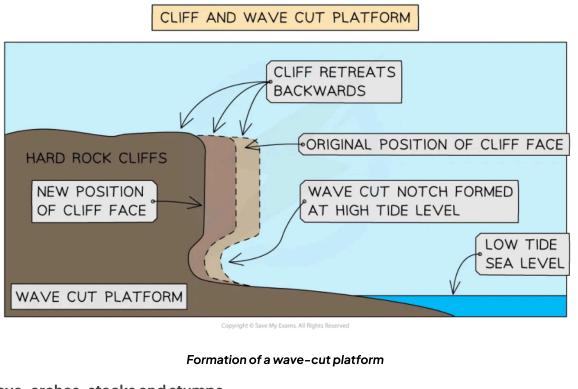
Formation of a bay and headland

Your notes

Formation of a bay and headland

Cliffs and wave-cut platforms

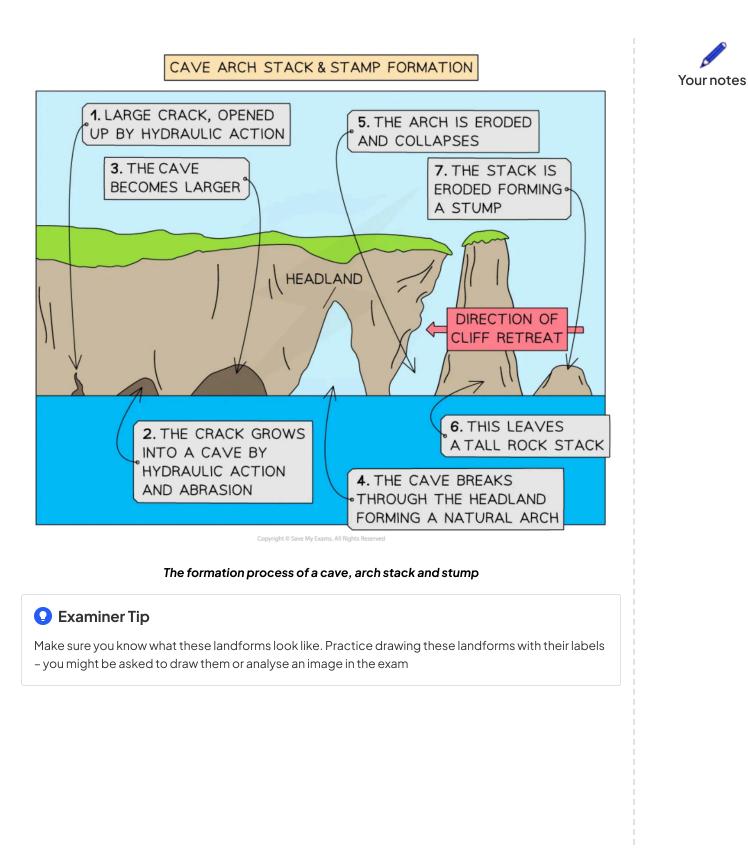
- Cliffs are vast walls of rock found on the coastline
- Constructive waves and softer sediment help form gentle, sloping cliffs
- Destructive waves and resistant rock help form steep cliffs
- Wave erosion processes, like hydraulic action and abrasion, wear away at the base of the cliff
- Wave refraction causes the highest wave energy to focus on the headland
- Waves break near the bottom of the cliff, so wave power is stronger
- Repeated erosion at the base of the cliff forms a wave-cut notch
- This notch widens with further erosion
- Sub-aerial weathering weakens the top of the cliff
- These combined processes cause the top of the cliff to collapse:
 - Over time, this process repeats, causing the cliff to retreat


Page 22 of 37

SaveMyExams Head to www.savemyexams.com for more awesome resources

Backwash brings the cliff material outwards towards the sea, forming a wave-cut platform

Formation of a wave-cut platform

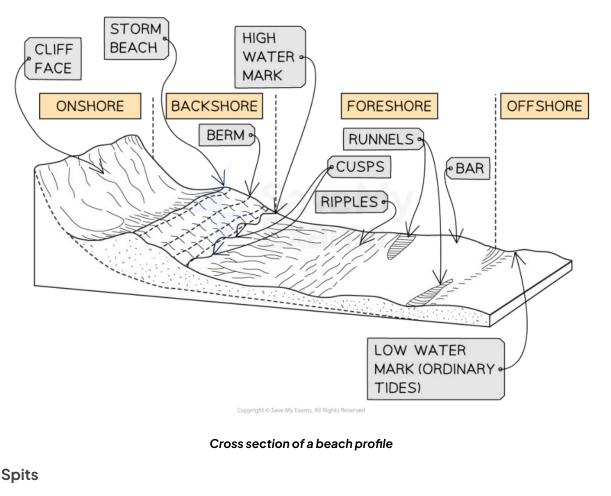


Cave, arches, stacks and stumps

- Wave and sub-aerial processes wear away at headlands, causing weaknesses
- These weaknesses expand into cracks, eventually growing into larger gaps or caves
- Continuous erosion and weathering from both sides of the headland will form an arch
- With wave erosion at the base and weathering at the top, the arch will give way and collapse
- This leaves behind a long, vertical piece of rock out at sea, called a stack
- Erosion undercuts the base of a stack. Weathering continues from above, until the stack collapses, leaving behind a stump

Formation of a cave, arch stack and stump

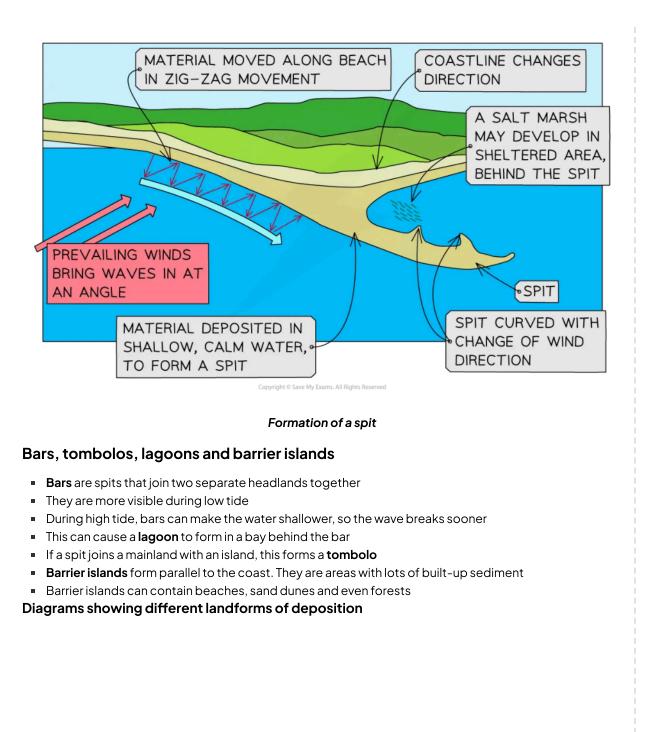
Your notes


Deposition Landforms

Beaches

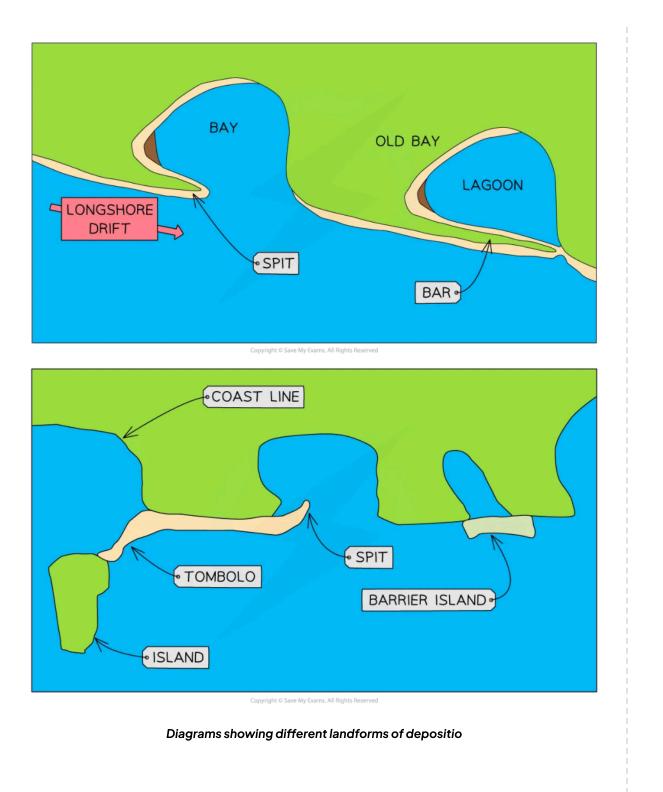
- Beaches are the **buffer point** between the ocean and the land
- Constructive waves have a stronger **swash**, moving more sediment up the coastline:
- Lots of larger sediment builds up at the back of the beach
- Constructive waves have a weaker **backwash**, so deposit sediment more easily:
 - The water also percolates into deposited sediment, so less water returns with the backwash
- Constructive waves occur more in summer, so beaches build up during this season (beach accretion)
- Destructive waves take away sediment from the beach, typically during the winter (beach excavation)
- Other landforms can form on beaches:
 - Ridges raised areas along the beach
 - Runnels dips along the beach
 - **Berms** ridges that represent the high tide mark
 - **Cusps** arc-shaped indents or hollows on the beach
- Sediment moves along the beach through longshore (littoral) drift, controlled by prevailing winds
- The differing angles of prevailing winds can produce different types of beaches:
 - Swash aligned waves hit parallel to the shore and there is less longshore drift. Beaches are large and wide, with landforms like berms and sand dunes
 - **Drift aligned** more influenced by longshore drift, moving sediment along the coast. Produces more narrow beaches, and other depositional landforms like spits and bars

Cross section of a beach profile


Your notes

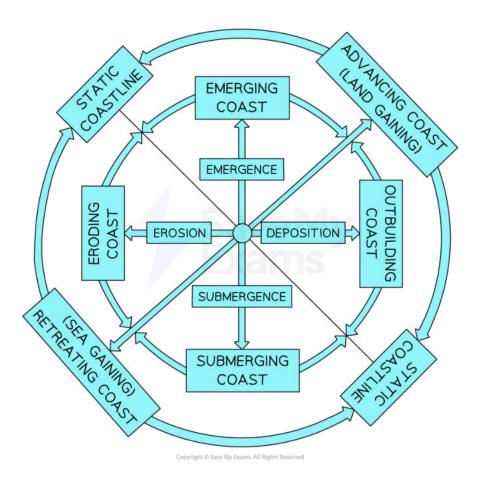
- A spit is an elongation of beach sediment, connected to the mainland and jutting out to sea
- Longshore drift transports and deposits sediment as it moves along the coastline
- Waves deposit sediment if the coastline changes, e.g. changes direction or reaches a river:
 Waves lose energy due to friction or counter-currents
- This material builds up over time, extending outwards into the sea
- Depending on the direction of the prevailing wind, the spit can curve inwards at the end
- **Salt marshes** can develop behind the spit where there is protection from wind and waves

Formation of a spit


Page 26 of 37

Page 27 of 37

Your notes


Page 28 of 37

5.2.4 Coastlines

Advancing & Retreating Coastlines

- Advancing and retreating coastlines are short-term processes
- If erosion is higher than deposition, this will cause an eroding (**retreating**) coastline
- If deposition is higher than erosion, this will cause an outbuilding (advancing) coastline
- Coasts can also advance and retreat as a result of long-term isostatic and eustatic change

Diagram based on Valentin's Classification of Coasts

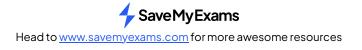


Diagram based on Valentin's Classification of Coasts

- There are many factors affecting advancing and retreating coastlines:
 - Erosion and weathering wearing away the coastline
 - Wave type destructive or constructive waves
 - Climate change increased storms and removal of coastal protection
 - Tides carrying sediment that can erode or deposit

Page 29 of 37

• Geology - resistant or non-resistant rock type

Isostatic & Eustatic Processes

- Isostatic and eustatic change refers to differences in sea level
- Sea level changes regularly and at smaller scales e.g. the tide
- Sea level change can also occur on a bigger scale
- Eustatic and isostatic change can occur simultaneously and coincide. Some coastlines flood whilst others, which were previously submerged, are now visible
- Sea level change can produce **emergent** and **submergent** coastlines

Eustatic change

- Eustatic sea level change is due to differences in ocean water **volume**
- This is a **global** process and the result of:
 - Changing climate
 - Thermal expansion
 - Tectonic activity

Changing climate

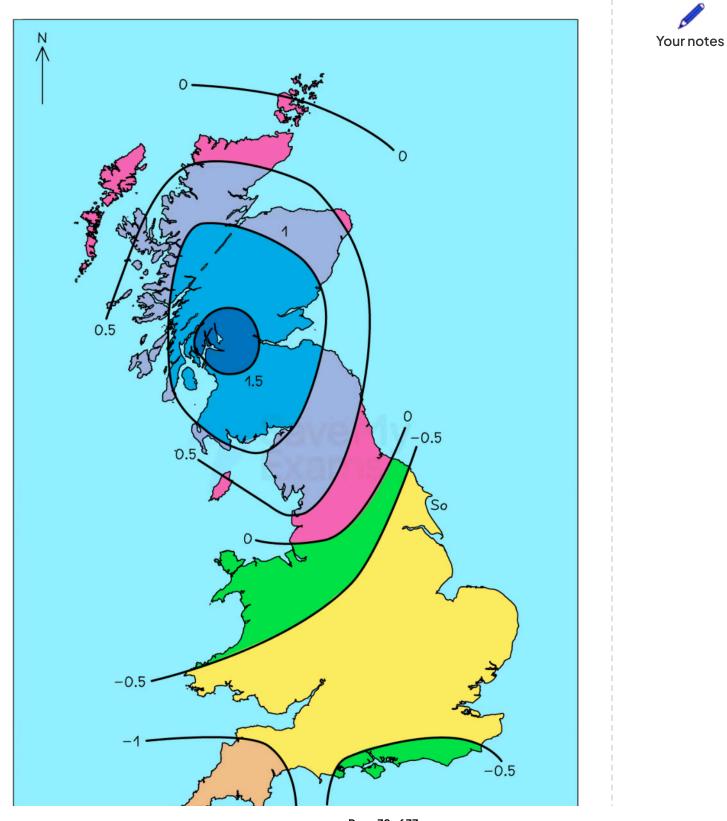
- The hydrological cycle pauses during an ice age
- Sea levels fall as the water freezes in ice or snow stores
- When this ice melts, sea levels rise again

Thermal expansion

- As water warms, it expands
- This increases water volume and raises sea levels

Tectonic activity

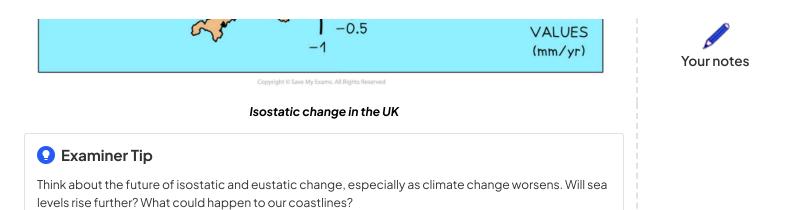
- Tectonic activity can change ocean topography e.g. ocean basins
- Earthquakes or volcanic magma under the ocean can change the shape of ocean basins
- If the ocean basin expands (and the amount of water stays the same) sea levels will sink and vice versa


Isostatic change

- This is the change in sea level due to differences in **land height**:
 - If land height increases, sea levels will reduce and vice versa
- Isostatic change is a more localised process
- Post-glacial adjustment
 - During an ice age, the weight of the ice compresses into the earth's crust, causing it to subside
 - After an ice age, the crust **rebounds** (isostatic rebound) and **uplifts**
 - Isostatic rebound can occur quickly, like the removal of a plug
 - It can also occur over a long period, as the mantle readjusts itself. This process is still occurring in some areas of the world after the last ice age
- Tectonic activity
 - Tectonic movement can also cause uplifting and subsidence

Isostatic change in the UK

Page 31 of 37



Page 32 of 37 © 2015–2024 <u>Save My Exams, Ltd.</u> · Revision Notes, Topic Questions, Past Papers

SaveMyExams

Head to <u>www.savemyexams.com</u> for more awesome resources

Landforms Associated with Isostatic & Eustatic Processes

Emergent landforms

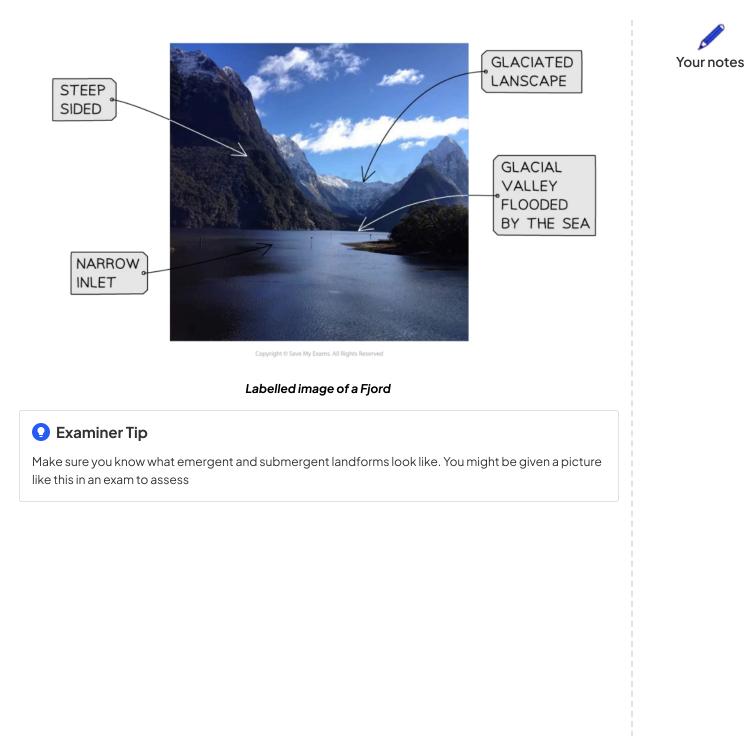
- Emergent landforms form when isostatic change is **faster** than eustatic change
- Sea levels sink, revealing emergent landforms
- They sit above the current sea level (as they were formed when the sea level was higher than present)

Raised beaches

- Beaches that are much higher than the current sea level
- They are flat and made of sand or rounded sediment
- They are covered in vegetation due to plant succession

Relict cliffs

- Steep slopes sit at the back of raised beaches, above sea level
- Falling sea levels reveal other erosional landforms e.g. caves, arches, wave-cut notches
- A fall in sea level can leave whole coastlines of relict landforms behind


Submergent landforms

- Submergent landforms form when eustatic change is **faster** than isostatic change
- As sea levels rise, they submerge areas of land, producing submergent landforms
- Located in inland areas, **flooded** by rising sea levels

Fjords and Rias

- As the sea level rises, water inundates glacial valleys, forming fjords
- Fjords mirror straight **U-shaped valleys** that glaciers produce
- Fjords can be lower than sea level but are slowly getting shallower due to isostatic change
- The mouth of the fjord meets the sea and is typically much shallower
- Rias are areas where water has flooded river valleys
- Rias mirror the steep V-shaped valleys carved out by rivers
- They twist and turn, just like a **meandering** river

Labelled image of a Fjord

Page 35 of 37 © 2015–2024 <u>Save My Exams, Ltd.</u> · Revision Notes, Topic Questions, Past Papers

5.2.5 Sand Dunes

Coastal Processes & Sand Dune Formation

- The coastal processes of erosion and deposition generate sediment for dune building
- Dunes form primarily by **prevailing winds** blowing sediment up the beach
- Plant succession stabilises sediment, which is vital for dune formation
- Dune formation requires:
 - Lots of sediment
 - Continuous wind
 - Large beaches
 - Large tidal range, so sand sediment has time to dry
 - Obstacles for the dune to form over
 - Hardy, pioneer species to bind the sand

Formation of a sand dune

- The wind blows up the beach, transporting sediment
- When sediment reaches an obstacle, large pieces settle in front of it to create a ridge
- Behind the obstacle, smaller pieces of sediment settle
- This will build up over time, forming a sand dune
- The sand dune is steeper on the windward side, and more gentle on the other
- A psammosere is the plant succession of a sand dune

Embryo dunes

- These are young, very **small** sand dunes (only a few metres)
- Pioneer species colonise in embryo dunes and stabilise the sand e.g. lime grass or saltwort
- Sand accumulates around the newly colonised plant
- These dunes are **fragile** and tides can easily wash them away

Foredune

- Further up the beach, behind the embryo dune, a foredune develops
- Foredunes form as embryo dunes build up
- Marram grass begins to grow, stabilising the dune further
- Sea holly grows on the sheltered side of the dune
- Species start to become more **diverse** and cover the ground

Yellow dune

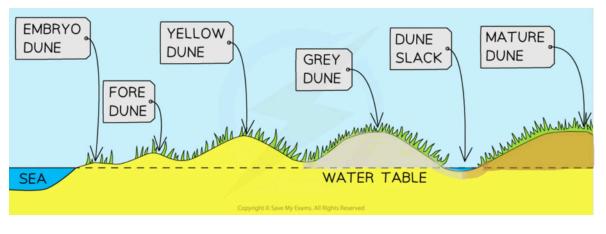
- These dunes sit above the beach level
- These are mainly made of sand rather than soil
- The diversity of organisms increases, e.g. ragwort
- Marram grass (dead leaves) incorporate organic matter (humus), into the dune, creating soil:
 - This makes the sand/soil more **nutrient-rich** a perfect environment for further plants to develop

Grey dune

Page 36 of 37

SaveMyExams

- Grey dunes have more protection from the other dunes in front
- Sand is more protected from the wind and stabilised by vegetation
- These dunes are **fixed** dunes
- Gorse and heather can grow as soils improve


Dune slack

- The **dip** between sand dunes is the **dune slack**
- They may be moist or entirely filled with water
- They are nutrient-rich and home to a variety of plants and animals

Mature dune

- This is the last stage of dune succession, reaching the climax community
- Conditions are much more favourable, with moisture and nutrient-rich soils
- They are far above the high-tide level
- These could be brambles, pine or birch trees

Diagram of dune succession

Diagram of dune succession

