

 $Head \ to \underline{www.savemyexams.com} \ for \ more \ awe some \ resources$

DP IB Maths: AA HL

2.4 Other Functions & Graphs

Contents

- * 2.4.1 Exponential & Logarithmic Functions
- * 2.4.2 Solving Equations
- * 2.4.3 Modelling with Functions

Head to www.savemyexams.com for more awesome resources

2.4.1 Exponential & Logarithmic Functions

Your notes

Exponential Functions & Graphs

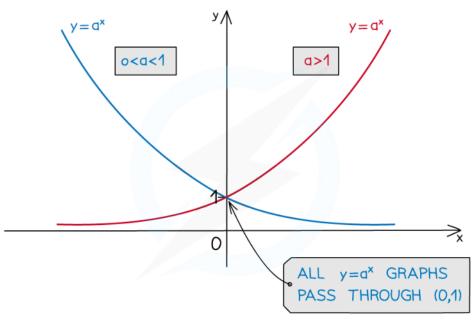
What is an exponential function?

- An exponential function is defined by $f(x) = a^x$, a > 0
- Its domain is the set of all real values
- Its range is the set of all positive real values
- An important exponential function is $f(x) = e^x$
 - Where e is the mathematical constant 2.718...
- Any exponential function can be written using e
 - $a^x = e^{x \ln a}$
 - This is given in the **formula booklet**

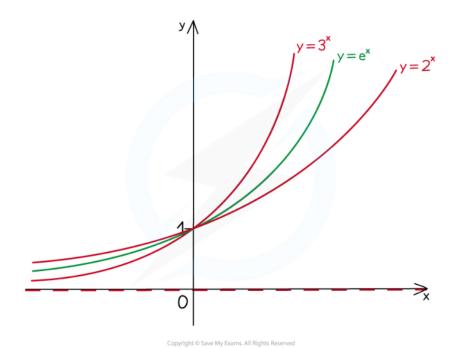
What are the key features of exponential graphs?

- The graphs have a **y-intercept** at (0, 1)
- The graph will always pass through the **point** (1, a)
- The graphs do not have any roots
- The graphs have a horizontal asymptote at the x-axis: y = 0
 - For a > 1 this is the limiting value when x tends to negative infinity
 - For **0** < a < **1** this is the **limiting value** when x tends to **positive infinity**
- The graphs do not have any minimum or maximum points

 $Head to \underline{www.savemyexams.com} for more awe some resources$

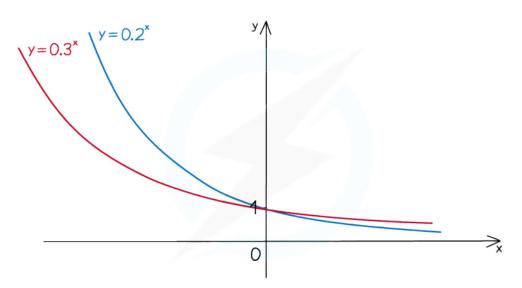


Copyright © Save My Exams. All Rights Reserved



Page 3 of 17

 $Head \, to \, \underline{www.savemyexams.com} \, for \, more \, awe some \, resources \,$



Copyright © Save My Exams, All Rights Reserved

Logarithmic Functions & Graphs

What is a logarithmic function?

- A logarithmic function is of the form $f(x) = \log_a x$, x > 0
- Its domain is the set of all positive real values
 - You can't take a log of zero or a negative number
- Its range is set of all real values
- $\log_a x$ and a^x are inverse functions
- An important logarithmic function is $f(x) = \ln x$
 - This is the natural logarithmic function $\ln x \equiv \log_e x$
 - This is the inverse of e^X
- Any logarithmic function can be written using In
 - $\log_a x = \frac{\ln x}{\ln a}$ using the change of base formula

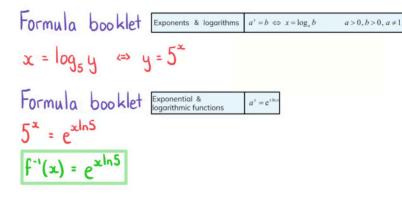
What are the key features of logarithmic graphs?

- The graphs do not have a y-intercept
- The graphs have **one root** at (1, 0)
- The graphs will always pass through the point (a, 1)
- The graphs have a **vertical asymptote** at the y-axis: X = 0
- The graphs do not have any minimum or maximum points

Worked example

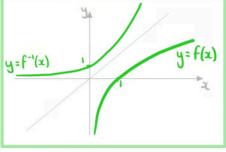
The function f is defined by $f(x) = \log_5 x$ for x > 0.

a) Write down the inverse of f . Give your answer in the form $\mathbf{e}^{g(x)}$.



b) Sketch the graphs of f and its inverse on the same set of axes.

f and f^{-1} are reflections in line y=x



2.4.2 Solving Equations

Your notes

Solving Equations Analytically

How can I solve equations analytically where the unknown appears only once?

- These equations can be solved by rearranging
- For one-to-one functions you can just apply the inverse
 - Addition and subtraction are inverses

$$V = X + k \Leftrightarrow X = Y - k$$

Multiplication and division are inverses

$$y = kx \iff x = \frac{y}{k}$$

■ Taking the reciprocal is a self-inverse

$$y = \frac{1}{X} \iff X = \frac{1}{V}$$

Odd powers and roots are inverses

$$y = x^n \iff x = \sqrt[n]{y}$$

$$y = x^n \iff x = y^{\frac{1}{n}}$$

• Exponentials and logarithms are inverses

•
$$y = a^x \Leftrightarrow x = \log_a y$$

$$v = e^x \Leftrightarrow x = \ln y$$

- For many-to-one functions you will need to use your knowledge of the functions to find the other solutions
 - Even powers lead to positive and negative solutions

$$y = x^n \Leftrightarrow x = \pm \sqrt[n]{y}$$

Modulus functions lead to positive and negative solutions

$$v = |x| \Leftrightarrow x = \pm y$$

• Trigonometric functions lead to infinite solutions using their symmetries

•
$$y = \sin x \Leftrightarrow x = 2k\pi + \arcsin y$$
 or $x = (1 + 2k)\pi - \arcsin y$

•
$$y = \cos x \Leftrightarrow x = 2k\pi \pm \arccos y$$

$$y = \tan x \Leftrightarrow x = k\pi + \arctan y$$

- Take care when you apply many-to-one functions to both sides of an equation as this can create additional solutions which are incorrect
 - For example: squaring both sides

•
$$x+1=3$$
 has one solution $x=2$

•
$$(x+1)^2 = 3^2$$
 has two solutions $x = 2$ and $x = -4$

Always check your solutions by substituting back into the original equation

How can I solve equations analytically where the unknown appears more than once?

- Sometimes it is possible to simplify expressions to make the unknown appear only once
- Collect all terms involving x on one side and try to simplify into one term
 - For **exponents** use
 - $a^{f(x)} \times a^{g(x)} = a^{f(x)} + g(x)$
 - $a^{f(x)} = a^{f(x)} = a^{f(x) g(x)}$
 - $a^{f(x)}g(x) = a^{f(x)} \times g(x)$
 - $a^{f(x)} = e^{f(x)\ln a}$
 - For logarithms use
 - $\log_a f(x) + \log_a g(x) = \log_a (f(x) \times g(x))$
 - $\log_a f(x) \log_a g(x) = \log_a \left(\frac{f(x)}{g(x)}\right)$
 - $n\log_a f(x) = \log_a (f(x))^n$

How can I solve equations analytically when the equation can't be simplified?

- Sometimes it is **not possible to simplify** equations
- Most of these equations cannot be solved analytically
- A special case that can be solved is where the equation can be transformed into a quadratic using a substitution
 - These will have **three terms** and involve the same type of function
- Identify the suitable substitution by considering which function is a square of another
 - For example: the following can be transformed into $2v^2 + 3v 4 = 0$
 - $2x^4 + 3x^2 4 = 0$ using $y = x^2$
 - $2x + 3\sqrt{x} 4 = 0$ using $y = \sqrt{x}$
 - $\frac{2}{x^6} + \frac{3}{x^3} 4 = 0$ using $y = \frac{1}{x^3}$
 - $2e^{2x} + 3e^x 4 = 0 \text{ using } v = e^x$
 - $2 \times 25^x + 3 \times 5^x 4 = 0$ using $y = 5^x$
 - $2^{2x+1} + 3 \times 2^x 4 = 0 \text{ using } y = 2^x$
 - $2(x^3-1)^2+3(x^3-1)-4=0 \text{ using } y=x^3-1$
- To solve:
 - Make the **substitution** y = f(x)
 - Solve the quadratic equation $ay^2 + by + c = 0$ to get $y_1 \& y_2$
 - Solve $f(x) = y_1$ and $f(x) = y_2$
 - Note that some equations might have zero or several solutions

Can I divide both sides of an equation by an expression?

- When dividing by an expression you must consider whether the expression could be zero
- Dividing by an expression that could be zero could result in you losing solutions to the original equation
 - For example: (x+1)(2x-1) = 3(x+1)
 - If you divide both sides by (x + 1) you get 2x 1 = 3 which gives x = 2
 - However x = -1 is also a solution to the original equation
- To ensure you **do not lose solutions** you can:
 - Split the equation into two equations
 - One where the dividing expression equals zero: x+1=0
 - One where the equation has been divided by the expression: 2x 1 = 3
 - Make the equation equal zero and factorise
 - (x+1)(2x-1)-3(x+1)=0
 - (x+1)(2x-1-3)=0 which gives (x+1)(2x-4)=0
 - Set each factor equal to zero and solve: x + 1 = 0 and 2x 4 = 0

Examiner Tip

- A common mistake that students make in exams is applying functions to each term rather than to each side
 - For example: Starting with the equation $\ln x + \ln(x-1) = 5$ it would be incorrect to write $e^{\ln x} + e^{\ln(x-1)} = e^5$ or $x + (x-1) = e^5$
 - Instead it would be correct to write $e^{\ln x + \ln(x 1)} = e^5$ and then simplify from there

Worked example

Find the exact solutions for the following equations:

a)
$$5 - 2\log_4 x = 0$$
.

Rearrange using inverse functions
$$5 - 2\log_4 x = 0$$

$$2\log_4 x = 5$$

$$\log_4 x = \frac{5}{2}$$

$$y = kx \Leftrightarrow x = \frac{9}{k}$$

$$x = 4^{\frac{5}{2}}$$

$$y = \log_a x \Leftrightarrow x = a^{\frac{9}{4}}$$

$$x = (\sqrt{4})^5$$

$$a^{\frac{m}{2}} = (\sqrt{3})^m$$

$$x = 32$$

b)
$$x = \sqrt{x+2}$$
.

Square both sides (Many-to-one function)

$$x^2 = x + 2 \Rightarrow x^2 - x - 2 = 0$$

 $(x - 2)(x + 1) = 0 \Rightarrow x = 2 \text{ or } x = -1$
Check whether each solution is valid
 $x = 2$: LHS = 2 RHS = $\sqrt{2+2} = 2$
 $x = -1$: LHS = -1 RHS = $\sqrt{-1+2} = 1$

c)
$$e^{2x} - 4e^x - 5 = 0$$
.

SaveMyExams

 $Head \ to \underline{www.savemyexams.com} \ for \ more \ awe some \ resources$

Notice
$$e^{2x} = (e^{x})^{2}$$
, let $y = e^{x}$
 $y^{2} - 4y - 5 = 0 \Rightarrow (y+1)(y-5) = 0$
 $y = -1$ or $y = 5$
Solve using $y = e^{x}$
 $e^{x} = -1$ has no solutions as $e^{x} > 0$
 $e^{x} = 5$ $\therefore x = \ln 5$

Solving Equations Graphically

How can I solve equations graphically?

- To solve f(x) = g(x)
 - One method is to draw the graphs y = f(x) and y = g(x)
 - The **solutions** are the **x-coordinates** of the points of **intersection**
 - Another method is to draw the graph y = f(x) g(x) or y = g(x) f(x)
 - The **solutions** are the **roots (zeros)** of this graph
 - This method is sometimes quicker as it involves **drawing only one graph**

Why do I need to solve equations graphically?

- Some equations cannot be solved analytically
 - Polynomials of degree higher than 4
 - $x^5 x + 1 = 0$
 - Equations involving different types of functions
 - $e^x = x^2$

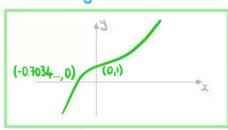
Examiner Tip

- On a calculator paper you are allowed to solve equations using your GDC unless the question asks for an algebraic method
- If your answer needs to be an exact value then you might need to solve analytically to get the exact value

Worked example

a) Sketch the graph $y = e^x - x^2$.

Sketch using GDC



b) Hence find the solution to $e^x = x^2$.

 $e^x = x^2$ when $e^x - x^2 = 0$

Solution is the x-intercept of $y=e^{x}-x^{2}$

$$x = -0.703$$
 (3sf)

Your notes

2.4.3 Modelling with Functions

Your notes

Modelling with Functions

What is a mathematical model?

- A mathematical model simplifies a real-world situation so it can be described using mathematics
 - The model can then be used to make predictions
- Assumptions about the situation are made in order to simplify the mathematics
- Models can be refined (improved) if further information is available or if the model is compared to realworld data

How do I set up the model?

- The question could:
 - give you the equation of the model
 - tell you about the relationship
 - It might say the relationship is linear, quadratic, etc
 - ask you to suggest a suitable model
 - Use your knowledge of each model
 - E.g. if it is compound interest then an exponential model is the most appropriate
- You may have to determine a **reasonable domain**
 - Consider real-life context
 - E.g. if dealing with hours in a day then
 - E.g. if dealing with physical quantities (such as length) then
 - Consider the **possible ranges**
 - If the outcome cannot be negative then you want to choose a domain which corresponds to a range with no negative values
 - Sketching the graph is helpful to determine a suitable domain

Which models might I need to use?

- You could be given any model and be expected to use it
- Common models include:
 - Linear
 - Arithmetic sequences
 - Linear regression
 - Quadratic
 - Projectile motion
 - The height of a cable supporting a bridge
 - Profit
 - Exponential
 - Geometric sequences
 - Exponential growth and decay
 - Compound interest

Head to www.savemyexams.com for more awesome resources

- Logarithmic
 - Richter scale for the magnitude of earthquakes
- Rational
 - Temperature of a cup of coffee
- Trigonometric
 - The depth of a tide

How do I use a model?

- You can use a model by substituting in values for the variable to **estimate outputs**
 - For example: Let h(t) be the height of a football t seconds after being kicked
 - h(3) will be an estimate for the height of the ball 3 seconds after being kicked
- Given an output you can form an equation with the model to estimate the input
 - For example: Let P(n) be the profit made by selling n items
 - Solving P(n) = 100 will give you an estimate for the number of items needing to be sold to make a profit of 100
- If your variable is **time** then substituting t = 0 will give you the **initial value** according to the model
- Fully understand the units for the variables
 - If the units of P are measured in **thousand dollars** then P = 3 represents \$3000
- Look out for **key words** such as:
 - Initially
 - Minimum/maximum
 - Limiting value

What do I do if some of the parameters are unknown?

- A general method is to form equations by substituting in given values
 - You can form multiple equations and solve them simultaneously using your GDC
 - This method works for all models
- The **initial value** is the value of the function when the variable is 0
 - This is **normally one of the parameters** in the equation of the model

Your notes

Worked example

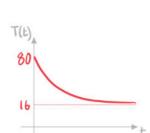
The temperature, T° C, of a cup of coffee is monitored. Initially the temperature is 80°C and 5 minutes later it is 40° C. It is suggested that the temperature follows the model:

$$T(t) = Ae^{kt} + 16, t \ge 0.$$

where t is the time, in minutes, after the coffee has been made.

a) State the value of A .

Initially temperature is 80°C

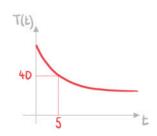


b) Find the exact value of k.

$$e^{5k} = \frac{3}{8}$$

$$5k = \ln \frac{3}{8}$$

$$k = \frac{1}{5} \ln \frac{3}{8}$$



Find the time taken for the temperature of the coffee to reach 30°C. C)

SaveMyExams

Head to www.savemyexams.com for more awesome resources

Find t such that T(t) = 30 $30 = 64e^{kt} + 16$ Leave as k until the end to save $64e^{kt} = 14$ writing $\frac{1}{5}\ln\frac{3}{8}$ each time $e^{kt} = \frac{7}{32}$ $kt = \ln\frac{7}{32}$ $t = \frac{\ln\frac{7}{32}}{k} = \frac{\ln\frac{7}{32}}{\frac{1}{5}\ln\frac{3}{8}} = 7.7476$.

