

1.6 Further Complex Numbers

Contents

- $★$ 1.6.1 Geometry of Complex Numbers
- **1.6.2 Forms of Complex Numbers**
- ***** 1.6.3 Applications of Complex Numbers

1.6.1 Geometry of Complex Numbers

Geometry of Complex Addition & Subtraction

What does addition look like on an Argand diagram?

- In Cartesian form two complex numbers are added by adding the real and imaginary parts
- When plotted on an Argand diagram the complex number z_1 + z_2 is the longer diagonal of the parallelogram with vertices at the origin, z_1 , z_2 and z_1 + z_2

What does subtraction look like on an Argand diagram?

- In Cartesian form the difference of two complex numbers is found by subtracting the real and imaginary parts
- When plotted on an Argand diagram the complex number z_l z_2 is the shorter diagonal of the parallelogram with vertices at the origin, z_1 , - z_2 and z_1 - z_2

Page 2 of 17

REMEMBER TO PLOT THE POINT -w BEFORE DRAWING THE PARALLELOGRAM

Copyright © Save My Exams. All Rights Reserved

What are the geometrical representations of complex addition and subtraction?

- \blacksquare Let w be a given complex number with real part a and imaginary part b
	- $w = a + bi$
- **EXECT:** Let z be any complex number represented on an Argand diagram

 $\overline{}$ ⎠

Adding w to z results in z being:

Subtracting w from z results in z being:

Translated by vector \int ⎝ $-*a*$ $-\mathbf{b}$

Q Examiner Tip

- **Take extra care when representing a subtraction of a complex number geometrically**
	- **Remember that your answer will be a translation of the shorter diagonal of the parallelogram** made up by the two complex numbers

Worked example

Consider the complex numbers $z_1 = 2 + 3i$ and $z_2 = 3 - 2i$.

On an Argand diagram represent the complex numbers z_1 , z_2 , z_1 + z_2 and z_1 - z_2 .

First find $z_1 + z_2$ and $z_1 - z_2$: $\mathbb{Z}_{1} + \mathbb{Z}_{2} = (2+3i) + (3-2i) = 5 + i$ $\mathbb{Z}_{1} - \mathbb{Z}_{2} = (2+3i) - (3-2i) = -1+5i$

Page 4 of 17

Geometry of Complex Multiplication & Division

What do multiplication and division look like on an Argand diagram?

- The geometrical effect of multiplying a complex number by a real number, a, will be an enlargement of the vector by scale factor a
	- For positive values of a the direction of the vector will not change but the distance of the point from the origin will increase by scale factor a
	- For negative values of a the direction of the vector will change and the distance of the point from the origin will increase by scale factor a
- \blacksquare The geometrical effect of dividing a complex number by a real number, a, will be an enlargement of the vector by scale factor 1/a
	- \blacksquare For positive values of a the direction of the vector will not change but the distance of the point from the origin will increase by scale factor 1/a
	- For negative values of a the direction of the vector will change and the distance of the point from the origin will increase by scale factor 1/a
- \blacksquare The geometrical effect of multiplying a complex number by i will be a rotation of the vector 90 $^{\circ}$ counter-clockwise
	- $i(x + yi) = -y + xi$
- The geometrical effect of multiplying a complex number by an imaginary number, ai, will be a rotation
	- 90° counter-clockwise and an enlargement by scale factor a
		- \blacksquare $ai(x + yi) = -ay + axi$
- The geometrical effect of multiplying or dividing a complex number by a complex number will be an enlargement and a rotation
	- **The direction of the vector will change**
		- The angle of rotation is the argument
	- The distance of the point from the origin will change
		- \blacksquare The scale factor is the **modulus**

What does complex conjugation look like on an Argand diagram?

- \blacksquare The geometrical effect of plotting a **complex conjugate** on an Argand diagram is a reflection in the real axis
	- \blacksquare The real part of the complex number will stay the same and the imaginary part will change sign

Q Examiner Tip

Make sure you remember the transformations that different operations have on complex numbers, this could help you check your calculations in an exam

Worked example

Consider the complex number $z = 2 - i$.

On an Argand diagram represent the complex numbers z, 3z, iz, z* and zz*.

First find 3z, iz and z^* $z = 2 - i$ $3z = 3(2-i) = 6-3i$ $iz = i(2-i) = 2i-i^2 = 2i-(-1) = 1 + 2i$ $z^* = 2 + i$ $z z^* = (z - i)(z + i) = 4 - i^2 = 4 - (-1) = 5$

1.6.2 Forms of Complex Numbers

Modulus-Argument (Polar) Form

How do I write a complex number in modulus-argument (polar) form?

- The **Cartesian form** of a complex number, $Z = X + iy$, is written in terms of its real part, X , and its imaginary part, \boldsymbol{y}
- If we let $r = |z|$ and $\theta = \arg z$, then it is possible to write a complex number in terms of its modulus, r , and its argument, θ , called the **modulus-argument (polar) form**, given by...
	- $\mathbf{z} = r(\cos \theta + i \sin \theta)$
	- This is often written as z = r cis *θ*
	- This is given in the formula book under Modulus-argument (polar) form and exponential (Euler) form
- It is usual to give arguments in the range $−\pi < \theta \leq \pi$ or $0 \leq \theta < 2\pi$
	- Negative arguments should be shown clearly

$$
\int e.g. z = 2\left(\cos\left(-\frac{\pi}{3}\right) + i\sin\left(-\frac{\pi}{3}\right)\right) = 2\operatorname{cis}\left(-\frac{\pi}{3}\right)
$$

■ without simplifying
$$
\cos(-\frac{\pi}{3})
$$
 to either $\cos(\frac{\pi}{3})$ or $\frac{1}{2}$

- The **complex conjugate** of $r \text{ cis } \theta$ is $r \text{ cis } (-\theta)$
- If a complex number is given in the form $z = r(\cos \theta i \sin \theta)$, then it is not in modulus-argument (polar) form due to the minus sign
	- It can be converted by considering transformations of trigonometric functions
		- $\sin \theta = \sin(-\theta)$ and $\cos \theta = \cos(-\theta)$

$$
\text{So } z = r(\cos\theta - i\sin\theta) = z = r(\cos(-\theta) + i\sin(-\theta)) = r \text{ cis }(-\theta)
$$

To convert from modulus-argument (polar) form back to Cartesian form, evaluate the real and imaginary parts

$$
= \operatorname{E.g.} z = 2\left(\cos\left(-\frac{\pi}{3}\right) + i\sin\left(-\frac{\pi}{3}\right)\right) \operatorname{becomes} z = 2\left(\frac{1}{2} + i\left(-\frac{\sqrt{3}}{2}\right)\right) = 1 - \sqrt{3} i
$$

How do I multiply complex numbers in modulus-argument (polar) form?

- The main benefit of writing complex numbers in modulus-argument (polar) form is that they multiply and divide very easily
- To multiply two complex numbers in modulus-argument (polar) form we multiply their moduli and add their arguments
 $I = -I = I$

$$
|z_1 z_2| = |z_1||z_2|
$$

\n• arg (z₁z₂) = arg z₁ + arg z₂

- So if $z_1 = r_1 \text{cis}(\theta_1)$ and $z_2 = r_2 \text{cis}(\theta_2)$
	- $z_1 z_2 = r_1 r_2 \text{ cis }(\theta_1 + \theta_2)$

Page 7 of 17

Sometimes the new argument, $\theta^-_1+\theta^-_2$, does not lie in the range $-\pi<\theta\leq\pi$ (or

 $0 \leq \theta < 2\pi$ if this is being used)

 $\,$ - An out-of-range argument can be adjusted by either $\,$ adding or subtracting 2π

Example 1 E.g. If
$$
\theta_1 = \frac{2\pi}{3}
$$
 and $\theta_2 = \frac{\pi}{2}$ then $\theta_1 + \theta_2 = \frac{7\pi}{6}$

- This is currently not in the range $−\pi < \theta \leq \pi$
- Subtracting 2π from 7π $\frac{1}{6}$ to give $-$ 5π $\overline{6}$, a new argument is formed
	- This lies in the correct range and represents the same angle on an Argand diagram
- The rules of multiplying the moduli and adding the arguments can also be applied when...
	- ...multiplying three complex numbers together, $z_{1}^{}z_{2}^{}z_{3}^{}$, or more
	- …finding powers of a complex number (e.g. $\boldsymbol{Z^2}$ can be written as $\boldsymbol{Z\!Z}$)
- The rules for multiplication can be proved algebraically by multiplying z_1 = r_1 cis (θ_1) by z_2 = r_2 cis (θ_2), expanding the brackets and using compound angle formulae

How do I divide complex numbers in modulus-argument (polar) form?

To divide two complex numbers in modulus-argument (polar) form, we divide their moduli and subtract their arguments
 $I = I$

$$
\begin{vmatrix} z_1 \\ z_2 \end{vmatrix} = \frac{|z_1|}{|z_2|}
$$

\n• arg $\left(\frac{z_1}{z_2}\right)$ = arg z_1 - arg z_2

So if $z_1 = r_1 \text{cis}(\theta_1)$ and $z_2 = r_2 \text{cis}(\theta_2)$ then

$$
\frac{Z_1}{Z_2} = \frac{r_1}{r_2} \text{cis} \left(\theta_1 - \theta_2 \right)
$$

- Sometimes the new argument, $\theta^-_1 \theta^-_2$, can lie out of the range $\pi < \theta \leq \pi$ (or the range
	- $0 \leq \theta \leq 2\pi$ if this is being used)
	- \blacksquare You can **add or subtract** 2π to bring out-of-range arguments back in range
- The rules for division can be proved algebraically by dividing z₁ = r₁ cis (θ₁) by z₂ = r₂ cis (θ₂) using complex division and the compound angle formulae

Page 8 of 17

SaveMyExams

Head to [www.savemyexams.com](https://www.savemyexams.com/?utm_source=pdf) for more awesome resources

Q Examiner Tip

- Remember that r cis θ only refers to $r(\cos \theta + i\sin \theta)$
	- If you see a complex number written in the form $z = r(\cos \theta i \sin \theta)$ then you will need to convert it to the correct form first
	- Make sure you are confident with basic trig identities to help you do this

Page 10 of 17

Exponential (Euler's) Form

How do we write a complex number in Euler's (exponential) form?

- A complex number can be written in Euler's form as $z\!=r\mathrm{e}^{\mathrm{i}\theta}$
	- This relates to the modulus-argument (polar) form as $z\!=r\mathrm{e}^{\mathrm{i}\theta}\!=r\,\mathrm{cis}\;\theta$
	- This shows a clear link between exponential functions and trigonometric functions
	- This is given in the formula booklet under 'Modulus-argument (polar) form and exponential (Euler) form'
- The argument is normally given in the range $0 \le \theta < 2\pi$
	- **However in exponential form other arguments can be used and the same convention of adding or** subtracting 2π can be applied

How do we multiply and divide complex numbers in Euler's form?

Euler's form allows for quick and easy multiplication and division of complex numbers

• If
$$
z_1 = r_1 e^{i\theta_1}
$$
 and $z_2 = r_2 e^{i\theta_2}$ then

$$
z_1 \times z_2 = r_1 r_2 e^{i(\theta_1 + \theta_2)}
$$

Multiply the moduli and add the arguments

$$
rac{Z_1}{Z_2} = \frac{r_1}{r_2} e^{i(\theta_1 - \theta_2)}
$$

- Divide the moduli and subtract the arguments
- Using these rules makes multiplying and dividing more than two complex numbers much easier than in Cartesian form
- When a complex number is written in Euler's form it is easy to raise that complex number to a power
	- If $z = re^{i\theta}$, $z^2 = r^2 e^{2i\theta}$ and $z^n = r^n e^{ni\theta}$

What are some common numbers in exponential form?

As $\cos(2\pi) = 1$ and $\sin(2\pi) = 0$ you can write:

$$
1 = e^{2\pi i}
$$

- Using the same idea you can write:
	- $1 = e^0 = e^{2\pi i} = e^{4\pi i} = e^{6\pi i} = e^{2k\pi i}$
	- \blacksquare where k is any integer
- As $\cos(\pi) = -1$ and $\sin(\pi) = 0$ you can write:
	- $e^{\pi i} = -1$
	- Or more commonly written as $e^{i\pi} + 1 = 0$
		- This is known as Euler's identity and is considered by some mathematicians as the most beautiful equation

Page 11 of 17

• As
$$
\cos\left(\frac{\pi}{2}\right) = 0
$$
 and $\sin\left(\frac{\pi}{2}\right) = 1$ you can write:
\n• $i = e^{\frac{\pi}{2}i}$

Q Examiner Tip

- Euler's form allows for easy manipulation of complex numbers, in an exam it is often worth the time converting a complex number into Euler's form if further calculations need to be carried out
	- Familiarise yourself with which calculations are easier in which form, for example multiplication and division are easiest in Euler's form but adding and subtracting are easiest in Cartesian form

Worked example

Consider the complex number z $=$ $2\mathrm{e}$ π $\frac{1}{3}$ i . Calculate Z^2 giving your answer in the form r e $^{\textrm{i}\theta}$.

$$
z^{2} = \left(2e^{\frac{\pi}{3}i}\right)^{2} = \left(2e^{\frac{\pi}{3}i}\right)\left(2e^{\frac{\pi}{3}i}\right) = 4e^{2\left(\frac{\pi}{3}i\right)}
$$

add the arguments

$$
z^2 = 4e^{\frac{2\pi}{3}i}
$$

SaveMyExams

Head to [www.savemyexams.com](https://www.savemyexams.com/?utm_source=pdf) for more awesome resources

Conversion of Forms

Converting from Cartesian form to modulus-argument (polar) form or exponential (Euler's) form

To convert from Cartesian form to modulus-argument (polar) form or exponential (Euler) form use

$$
r = |z| = \sqrt{x^2 + y^2}
$$

- and
	- θ = arg z

Converting from modulus-argument (polar) form or exponential (Euler's) form to Cartesian form

- To convert from modulus-argument (polar) form to Cartesian form
	- You may need to use your knowledge of trig exact values
	- $a = r \cos \theta$ and $b = r \sin \theta$
	- Write $z = r(\cos\theta + i\sin\theta)$ as $z = r \cos\theta + (r \sin\theta)$ i
	- Find the values of the trigonometric ratios $r \sin\theta$ and $r \cos\theta$
	- Rewrite as $z = a + bi$ where
- To convert from exponential (Euler's) form to Cartesian form first rewrite z = r e^{iθ}in the form z = r cosθ + (r sinθ)i and then follow the steps above

Converting between complex number forms using your GDC

- Your GDC may also be able to convert complex numbers between the various forms
	- TI calculators, for example, have 'Convert to Polar' and 'Convert to Rectangular' (i.e. Cartesian) as options in the 'Complex Number Tools' menu
	- Make sure you are familiar with your GDC and what it can (and cannot) do with complex numbers

Q Examiner Tip

- When converting from Cartesian form into Polar or Euler's form, always leave your modulus and argument as an exact value
	- **EXECUTE:** Rounding values too early may result in inaccuracies later on

b) Write $Z^{}_2$ in the form $\mathit{r}(\cos\theta + i\sin\theta)$ and then convert it to Cartesian form.

$$
z_2 = 3e^{\frac{2\pi}{3}i} = 3(\cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3})
$$

= 3(- $\frac{1}{2}$ + i($\frac{\sqrt{3}}{2}$))

$$
z_2 = \frac{3}{2}(-1 + \sqrt{3}i)
$$

Your notes

Page 14 of 17

1.6.3 Applications of Complex Numbers

Frequency & Phase of Trig Functions

How are complex numbers and trig functions related?

- A sinusoidal function is of the form a $sin(bx + c)$
	- a represents the amplitude
	- \blacksquare b represents the **period** (also known as frequency)
	- c represents the phase shift
		- The function may be written a $sin(bx + bc) = a sinb(x + c)$ where the phase shift is represented by bc
		- **This will be made clear in the exam**
- When written in modulus-argument form the imaginary part of a complex number relates only to the sin part and the real part relates to the cos part
	- This means that the complex number can be rewritten in Euler's form and relates to the sinusoidal functions as follows:
	- $a \sin(bx + c) = Im(a e^{i(bx + c)})$
	- $a\cos(bx+c)$ = Re (ae^{i(bx+c)})
- Complex numbers are particularly useful when working with electrical currents or voltages as these follow sinusoidal wave patterns
	- AC voltages may be given in the form $V = a \sin(bt + c)$ or $V = a \cos(bt + c)$

How are complex numbers used to add two sinusoidal functions?

Complex numbers can help to add two sinusoidal functions if they have the same frequency but different amplitudes and phase shifts e.g. $2\sin(3x + 1)$ can be added to $3\sin(3x - 5)$ but not $2\sin(5x + 1)$ To add $asin(bx + c)$ to $dsin(bx + e)$ \blacksquare or $acos(bx + c)$ to $dcos(bx + e)$ STEP 1: Consider the complex numbers $z_1 = ae^{i(bx+c)}$ and $z_2 = de^{i(bx+e)}$ Then $a\sin(bx + c) + d\sin(bx + e) = \text{Im}(z_1 + z_2)$ $Or \, a \cos(bx + c) + d \cos(bx + e) = Re (z_1 + z_2)$ STEP 2: Factorise $z_1 + z_2 = ae^{i(bx+c)} + de^{i(bx+e)} = e^{ibx} (ae^{ci} + de^{ei})$ STEP 3: Convert ae^{ci} + de^{ei} into a single complex number in exponential form You may need to convert it into Cartesian form first, simplify and then convert back into exponential form **Vour GDC will be able to do this quickly STEP 4: Simplify the whole term and use the rules of indices to collect the powers STEP 5: Convert into polar form and take... nonly the imaginary part for sin** or only the real part for cos

Page 16 of 17

Q Examiner Tip

- An exam question involving applications of complex numbers will often be made up of various parts which build on each other
	- **Remember to look back at your answers from previous question parts to see if they can help** you, especially when looking to convert from Euler's form to a sinusoidal graph form

Worked example

Two AC voltage sources are connected in a circuit. If $\left|V_{1}\right|=20{\rm sin}(30t)$ and $\left|V_{2}\right|=30{\rm sin}(30t+5)$ find an expression for the total voltage in the form $V = A \sin(30t + B)$.

 $20\sin(30t) + 30\sin(30t + 5)$

Frequencies are the
same so they can be added

STEP 1: Let $\vec{z}_1 = 20e^{i(30t)}$ and $\vec{z}_2 = 30e^{i(30t+5)}$

In polar form the imaginary parts are the sinusoidal functions we want to add.

Step 2: Find
$$
z_1 + z_2
$$

\n
$$
z_1 + z_2 = 20e^{i(30t)} + 30e^{i(30t + 5)}
$$

\n
$$
= 10e^{30t} (2 + 3e^{5t})
$$

\n
$$
= 2.85a - 2.85b - 2.85b + 1
$$

STEP 3: Use GDC to find 2+3e^{si} in Euler's form

$$
= 10e^{30bi}(4.05me^{-0.789m i})
$$

STEP 4: Use index laws to simple.

$$
= 40.5e^{i(30t - 0.789...)}
$$

STEP 5: Convert to Polar form

$$
= 40.5(\cos(30t - 0.789...) + i \sin(30t - 0.789...))
$$

The imaginary part is the solution

 $V = 40.5 \sin(30t - 0.790)$

Page 17 of 17