

3.7 Inverse & Reciprocal Trig Functions

Contents

- ✤ 3.7.1 Reciprocal Trig Functions
- ✤ 3.7.2 Inverse Trig Functions

3.7.1 Reciprocal Trig Functions

Reciprocal Trig Functions

What are the reciprocal trig functions?

- There are three reciprocal trig functions that each correspond to either sin, cos or tan
 - Secant (sec x)

.

$$\sec x = \frac{1}{\cos x}$$

Cosecant (cosec x)

• cosec
$$x = \frac{1}{\sin x}$$

Cotangent (cot x)

$$-\cot x = \frac{1}{\tan x}$$

- The identities above for sec x and cosec x are given in the formula booklet
- The identity for cot x is **not given**, you will need to remember it
- A good way to remember which function is which is to look at the **third** letter in each of the reciprocal trig functions
 - cotxislovertanxetc
- Each of the reciprocal trig functions are undefined for certain values of x
 - sec x is undefined for values of x for which $\cos x = 0$
 - $\operatorname{cosec} x$ is undefined for values of x for which $\sin x = 0$
 - $\cot x$ is undefined for values of x for which $\tan x = 0$
 - When $\tan x$ is undefined, $\cot x = 0$

 $\sin x$

• Rearranging the identity
$$\tan x = \frac{1}{\cos x}$$
 gives

$$v = \frac{\cos x}{\cos x}$$

$$\cot x = \frac{1}{\sin x}$$

- This is not in the formula booklet but is easily derived
- Be careful not to confuse the reciprocal trig functions with the inverse trig functions

•
$$\sin^{-1} x \neq \frac{1}{\sin x}$$

What do the graphs of the reciprocal trig functions look like?

- The graph of **y** = **secx** has the following properties:
 - The y-axis is a line of symmetry
 - It has a period of 360° (2π radians)
 - There are vertical **asymptotes** wherever **cos** *x* **= 0**

Page 2 of 12

- If drawing the graph without the help of a GDC it is a good idea to sketch cos x first and draw these in
- The domain is all x except odd multiples of 90° (90°, -90°, 270°, -270°, etc.)
 - in **radians** this is all *x* except odd multiples of $\pi/2$ ($\pi/2$, $-\pi/2$, $3\pi/2$, $-3\pi/2$, etc.)
- The range is $y \le -1$ or $y \ge 1$

- The graph of **y** = **cosec x** has the following properties:
 - It has a period of 360° (2π radians)
 - There are vertical asymptotes wherever sin x = 0
 - If drawing the graph it is a good idea to sketch sin x first and draw these in
 - The **domain** is all *x* except multiples of 180° (0°, 180°, -180°, 360°, -360°, etc.)
 - in radians this is all x except multiples of π (0, π , - π , 2 π , -2 π , etc.)
 - The range is $y \le -1$ or $y \ge 1$

Page 3 of 12

Head to <u>www.savemyexams.com</u> for more awesome resources

- The graph of **y** = **cot x** has the following properties
 - It has a **period** of **180°** or **π** radians
 - There are vertical **asymptotes** wherever **tan** *x* **= 0**
 - The domain is all x except multiples of 180° (0°, 180°, -180°, 360°, -360°, etc.)
 In radians this is all x except multiples of π (0, π, π, 2π, -2π, etc.)
 - The **range** is $y \in \mathbb{R}$ (i.e. cot can take *any* real number value)

Examiner Tip

- To solve equations with the reciprocal trig functions, convert them into the regular trig functions and solve in the usual way
- Don't forget that both **tan** and **cot** can be written in terms of **sin** and **cos**
- You will sometimes see **csc** instead of **cosec** for cosecant

Pythagorean Identities

What are the Pythagorean Identities?

- Aside from the Pythagorean identity $\sin^2 x + \cos^2 x = 1$ there are two further Pythagorean identities you will need to learn
 - $1 + \tan^2 \theta = \sec^2 \theta$
 - $1 + \cot^2 \theta = \csc^2 \theta$
 - Both can be found in the formula booklet
- Both of these identities can be derived from $\sin^2 x + \cos^2 x = 1$
 - To derive the identity for $\sec^2 x$ divide $\sin^2 x + \cos^2 x = 1$ by $\cos^2 x$
 - To derive the identity for $cosec^2x$ divide $sin^2x + cos^2x = 1$ by sin^2x

😧 Examiner Tip

All the Pythagorean identities can be found in the **Topic 3**: **Geometry and Trigonometry** section of the formula booklet

3.7.2 Inverse Trig Functions

Inverse Trig Functions

What are the inverse trig functions?

- The functions **arcsin**, **arccos** and **arctan** are the **inverse functions** of **sin**, **cos** and **tan** respectively when their domains are restricted
 - $\sin(\arcsin x) = x$ for $-1 \le x \le 1$
 - $\cos(\arccos x) = x \text{ for } -1 \le x \le 1$
 - tan(arctan x) = x for all x
- You will have seen and used the inverse trig **operations** many times already
 - Arcsin is the operation sin⁻¹
 - Arccos is the operation **cos**⁻¹
 - Arctan is the operation tan⁻¹
- The domains of sin, cos, and tan must first be restricted to make them one-to-one functions
 - A function can only have an inverse if it is a one-to-one function
- The domain of sin x is restricted to -π/2≤x≤π/2 (-90°≤x≤90°)
- The domain of $\cos x$ is restricted to $0 \le x \le \pi$ ($0^\circ \le x \le 180^\circ$)
- The domain of tan x is restricted to -π/2 < x < π/2 (-90° < x < 90°)
- Be aware that $\sin^{-1}x$, $\cos^{-1}x$, and $\tan^{-1}x$ are **not** the same as the reciprocal trig functions
 - They are used to solve trig equations such as $\sin x = 0.5$ for all values of x
 - arcsin x is the same as sin⁻¹ x but not the same as (sin x)⁻¹

What do the graphs of the inverse trig functions look like?

- The graphs of **arcsin**, **arccos** and **arctan** are the **reflections** of the graphs of **sin**, **cos** and **tan** (after their domains have been restricted) in the line y = x
 - The **domains** of $\arcsin x$ and $\arccos x$ are both $-1 \le x \le 1$
 - The **range** of arcsin x is $-\pi/2 \le y \le \pi/2$

• The **range** of $\arccos x$ is $0 \le y \le \pi$

- The **domain** of $\arctan x$ is $x \in \mathbb{R}$
- The range of $\arctan x$ is $-\pi/2 < y < \pi/2$
 - Note that there are horizontal asymptotes at $\pi/2$ and $-\pi/2$

Page 10 of 12

SaveMyExams

How are the inverse trig functions used?

- The functions arcsin, arccos and arctan are used to evaluate trigonometric equations such as sin x = 0.5
 - If sin x = 0.5 then arcsin 0.5 = x for values of x between $-\pi/2 \le x \le \pi/2$
 - You can then use symmetries of the trig function to find solutions over other intervals
- The inverse trig functions are also used to help evaluate algebraic expressions
 - From sin (arcsin x) = x we can also say that sinⁿ(arcsin x) = xⁿ for $-1 \le x \le 1$
 - If using an inverse trig function to evaluate an algebraic expression then remember to consider the domain and range of the function
 - $\arcsin(\sin x) = x$ only for $-\pi/2 \le x \le \pi/2$
 - $\operatorname{arccos}(\cos x) = x$ only for $0 \le x \le \pi$
 - $\arctan(\tan x) = x$ only for $-\pi/2 < x < \pi/2$
 - The symmetries of the trig functions can be used when values lie outside of the domain or range
 - Using $sin(x) = sin(\pi x)$ you get $arcsin(sin(2\pi/3)) = arcsin(sin(\pi/3)) = \pi/3$

💽 Examiner Tip

 Make sure you know the shapes of the graphs for sin, cos and tan so that you can easily reflect them in the line y = x and hence sketch the graphs of arcsin, arccos and arctan

Your notes

