

2.6 Transformations of Graphs

Contents

- ✤ 2.6.1 Translations of Graphs
- ★ 2.6.2 Reflections of Graphs
- ✤ 2.6.3 Stretches Graphs
- ✤ 2.6.4 Composite Transformations of Graphs

2.6.1 Translations of Graphs

Translations of Graphs

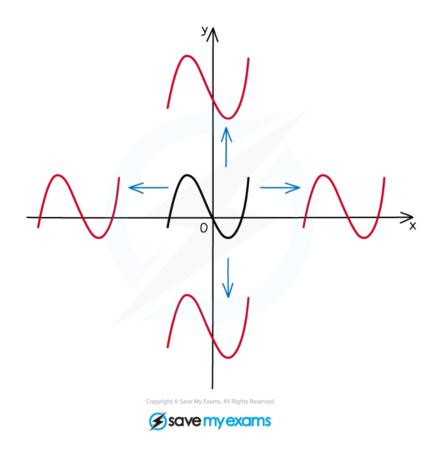
What are translations of graphs?

- When you alter a function in certain ways, the effects on the graph of the function can be described by geometrical transformations
- For a translation:
 - the graph is **moved** (up or down, left or right) in the xy plane
 - Its position changes
 - the shape, size, and orientation of the graph remain **unchanged**

• A particular translation (how far left/right, how far up/down) is specified by a **translation vector**

- x is the **horizontal** displacement
 - Positive moves right
 - Negative moves left
- y is the **vertical** displacement
 - Positive moves up
 - Negative moves down

X



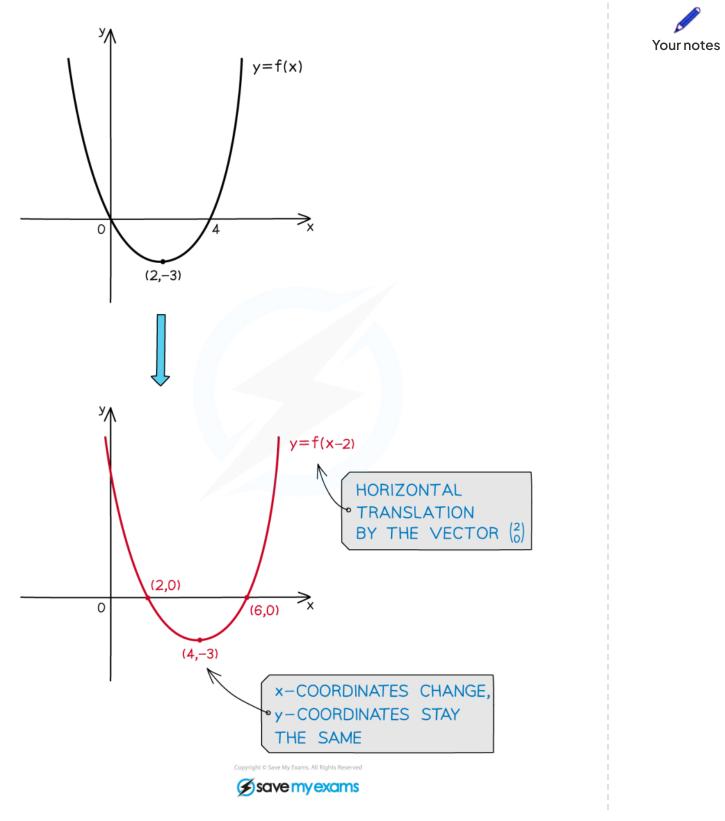
What effects do horizontal translations have on the graphs and functions?

• A horizontal translation of the graph
$$y = f(x)$$
 by the vector $\begin{pmatrix} a \\ 0 \end{pmatrix}$ is represented by

•
$$y = f(x - a)$$

- The x-coordinates change
 - The value *a* is **subtracted** from them
- The y-coordinates stay the same
- The coordinates (x, y) become (x + a, y)
- Horizontal asymptotes stay the same
- Vertical asymptotes change
 - x = k becomes x = k + a

Page 3 of 33

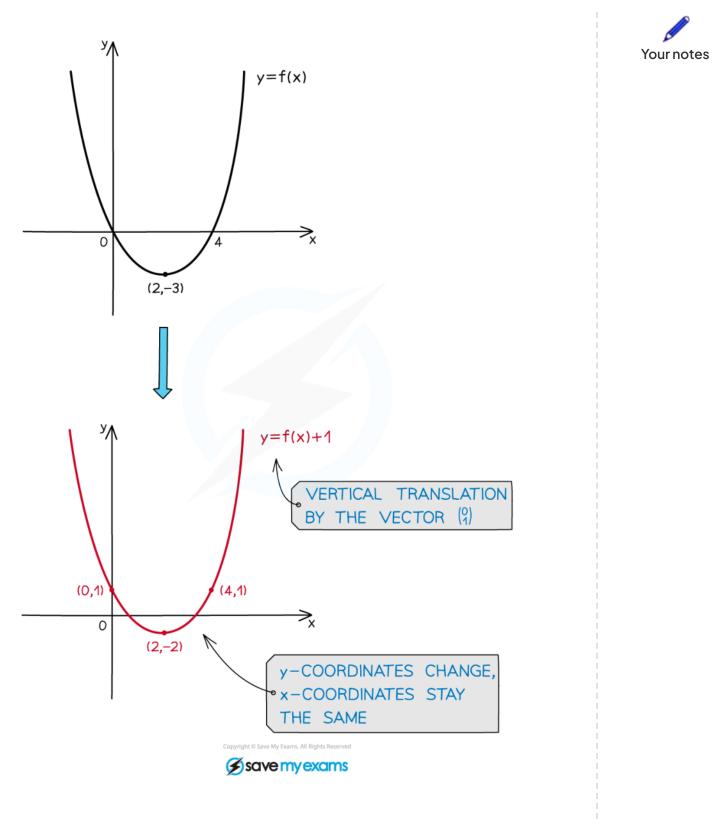


🗲 Save My Exams Head to www.savemyexams.com for more awesome resources

What effects do vertical translations have on the graphs and functions?

• A vertical translation of the graph y = f(x) by the vector $\begin{pmatrix} 0 \\ b \end{pmatrix}$ is represented by

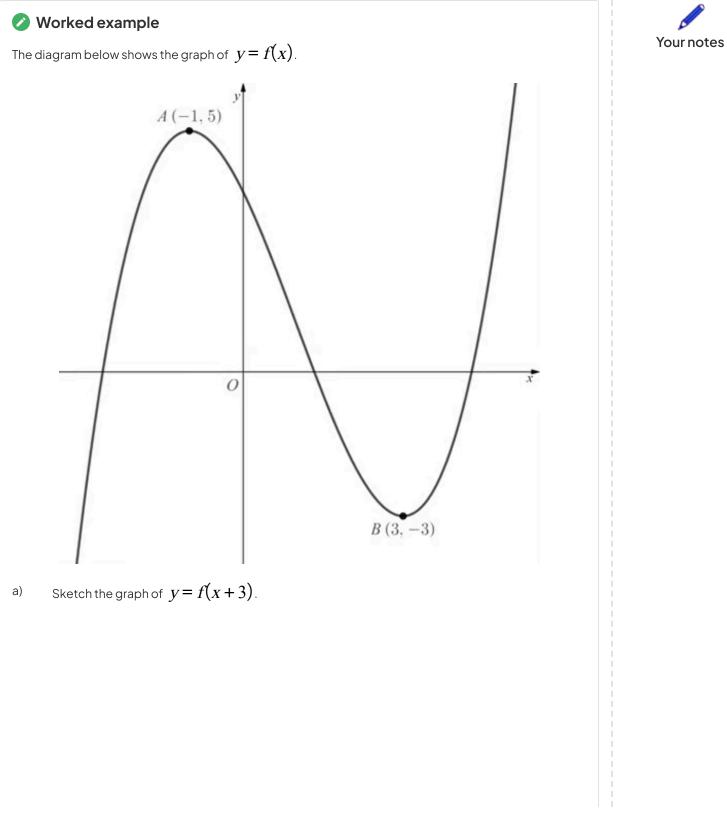
- y b = f(x)
- This is often rearranged to y = f(x) + b
- The x-coordinates stay the same
- The y-coordinates change
 - The value b is **added** to them
- The coordinates (x, y) become (x, y+b)
- Horizontal asymptotes change
 - y = k becomes y = k + b
- Vertical asymptotes stay the same

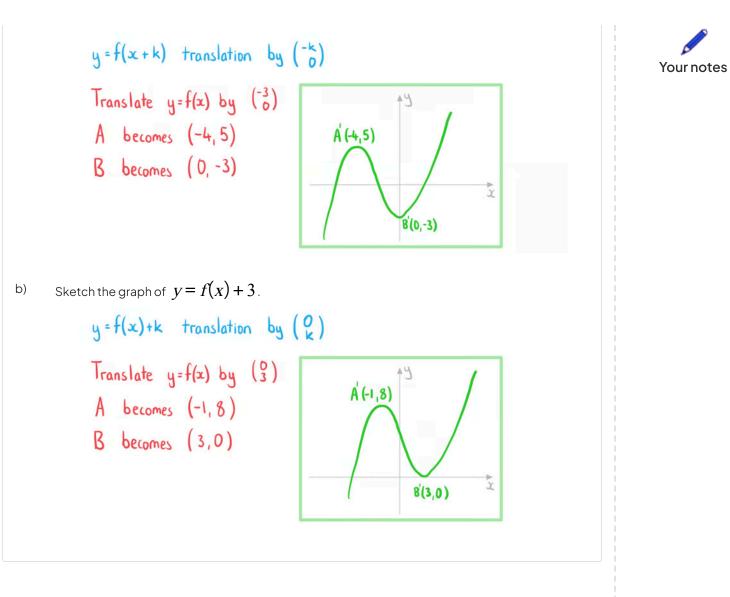


Page 6 of 33

• To get full marks in an exam make sure you use correct mathematical terminology

• For example: Translate by the vector $\begin{pmatrix} 2 \\ -4 \end{pmatrix}$



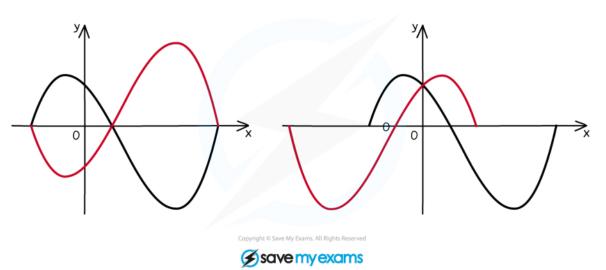


2.6.2 Reflections of Graphs

Reflections of Graphs

What are reflections of graphs?

- When you alter a function in certain ways, the effects on the graph of the function can be described by geometrical transformations
- For a reflection:
 - the graph is **flipped** about one of the coordinate axes
 - Its orientation changes
 - the size of the graph remains **unchanged**
- A particular reflection is specified by an **axis of symmetry**:
 - y = 0
 - This is the x-axis
 - x = 0
 - This is the y-axis



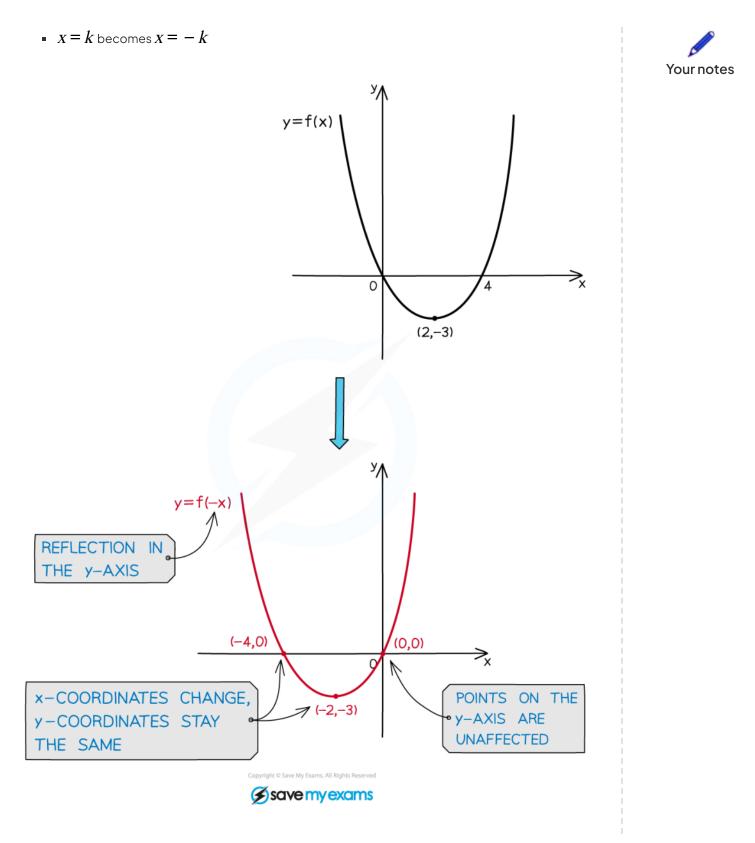
What effects do horizontal reflections have on the graphs and functions?

• A horizontal reflection of the graph y = f(x) about the y-axis is represented by

$$y = f(-x)$$

- The x-coordinates change
 - Their sign changes
- The y-coordinates stay the same
- The coordinates (x, y) become (-x, y)
- Horizontal asymptotes stay the same
- Vertical asymptotes change

Page 10 of 33



What effects do vertical reflections have on the graphs and functions?

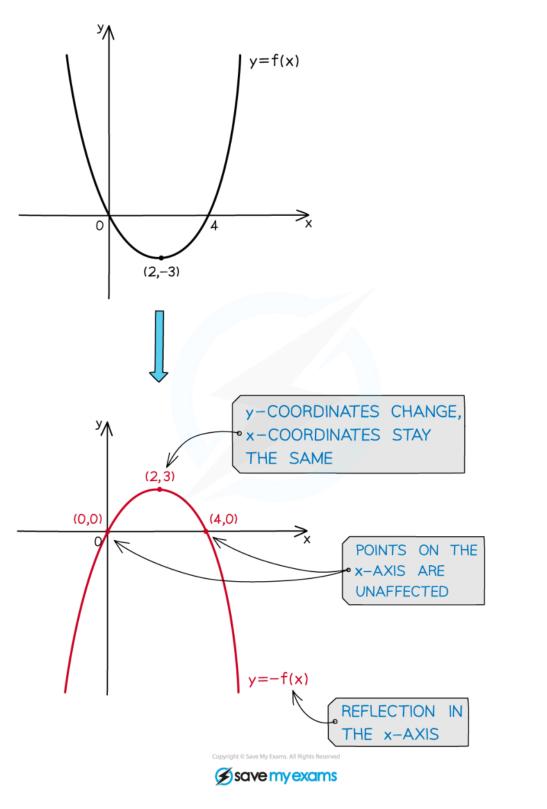
• A vertical reflection of the graph y = f(x) about the x-axis is represented by

$$-y=f(x)$$

-

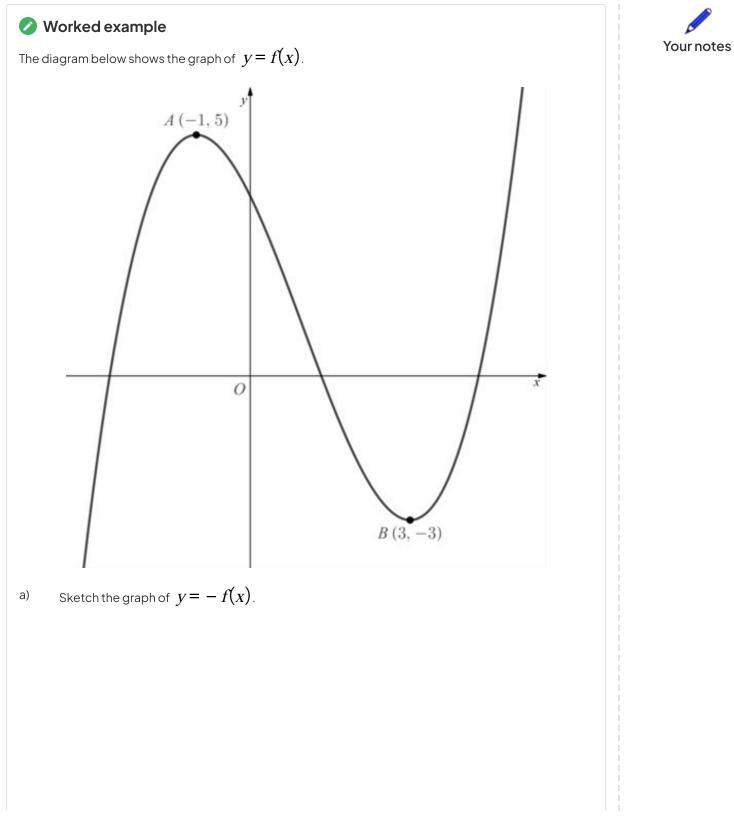
- This is often rearranged to y = -f(x)
- The x-coordinates stay the same
- The y-coordinates change
 - Their sign changes
- The coordinates (x, y) become (x, -y)
- Horizontal asymptotes change
 - y = k becomes y = -k
- Vertical asymptotes stay the same

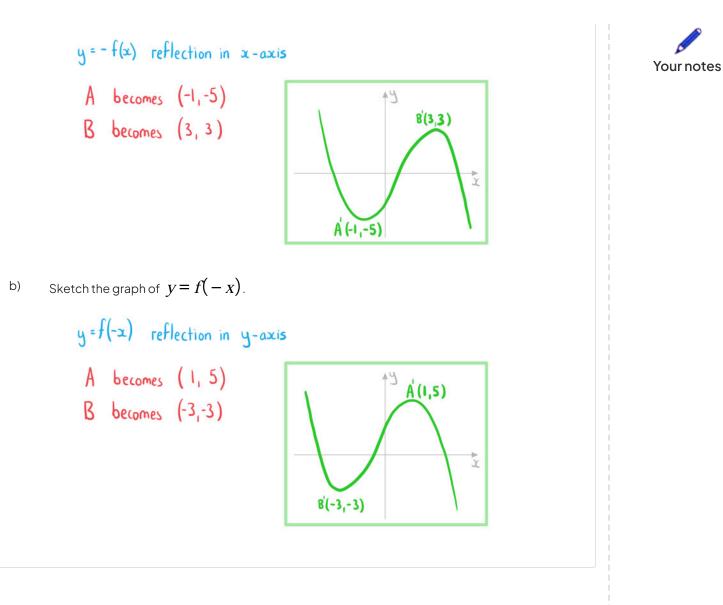
Your notes



Page 13 of 33

© 2015-2024 Save My Exams, Ltd. · Revision Notes, Topic Questions, Past Papers



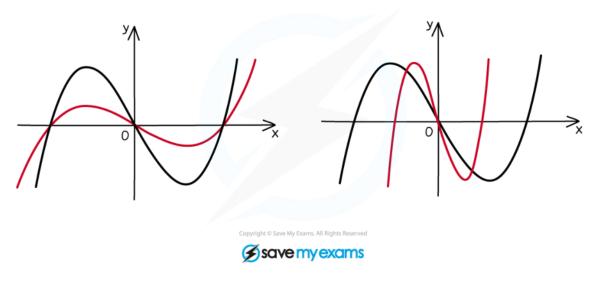


2.6.3 Stretches Graphs

Stretches of Graphs

What are stretches of graphs?

- When you alter a function in certain ways, the effects on the graph of the function can be described by geometrical transformations
- For a stretch:
 - the graph is **stretched** about one of the coordinate axes by a scale factor
 - Its size changes
 - the orientation of the graph remains **unchanged**
- A particular stretch is specified by a **coordinate axis** and a **scale factor**:
 - The distance between a point on the graph and the specified coordinate axis is multiplied by the constant scale factor
 - The graph is stretched in the **direction** which is **parallel** to the **other coordinate axis**
 - For scale factors **bigger than 1**
 - the points on the graph get **further away** from the **specified coordinate axis**
 - For scale factors between 0 and 1
 - the points on the graph get **closer** to the **specified coordinate axis**
 - This is also sometimes called a **compression** but in your exam you must use the term **stretch** with the appropriate scale factor



What effects do horizontal stretches have on the graphs and functions?

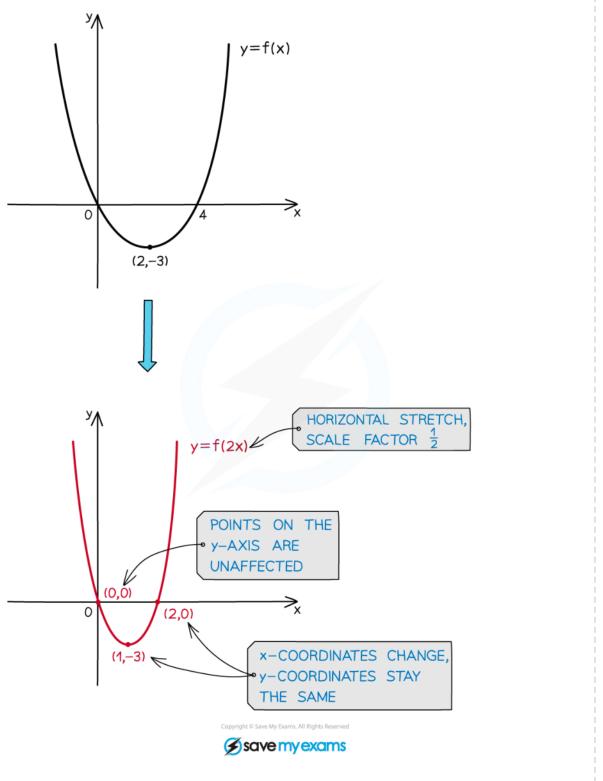
• A horizontal stretch of the graph y = f(x) by a scale factor q centred about the y-axis is represented by

Page 16 of 33

•
$$y = f\left(\frac{x}{q}\right)$$

- The x-coordinates change
 - They are **divided** by q
- The y-coordinates stay the same
- The coordinates (x, y) become (qx, y)
- Horizontal asymptotes stay the same
- Vertical asymptotes change
 - x = k becomes x = qk

Your notes



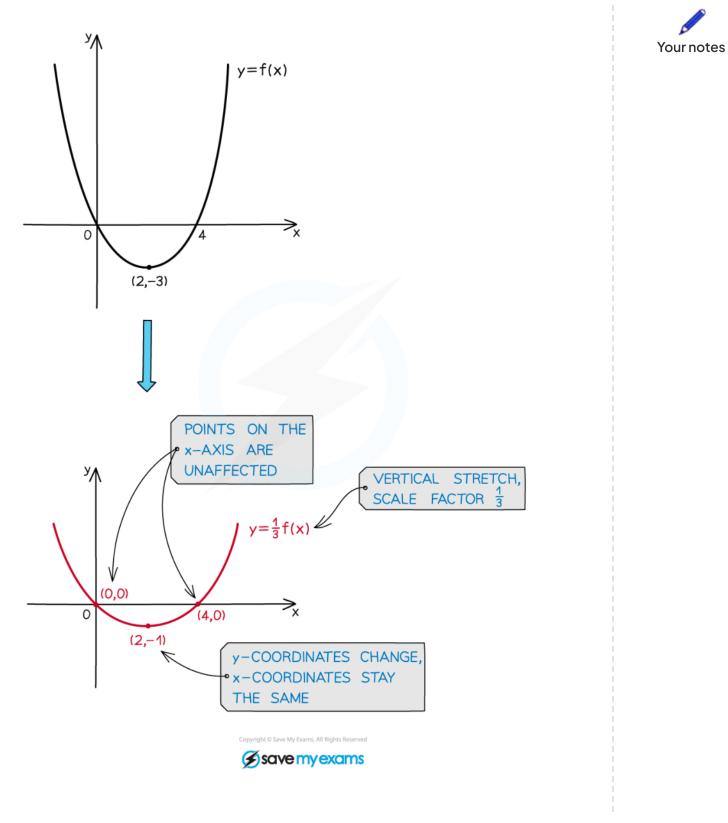
What effects do vertical stretches have on the graphs and functions?

Page 18 of 33

• A vertical stretch of the graph y = f(x) by a scale factor *p* centred about the *x*-axis is represented by

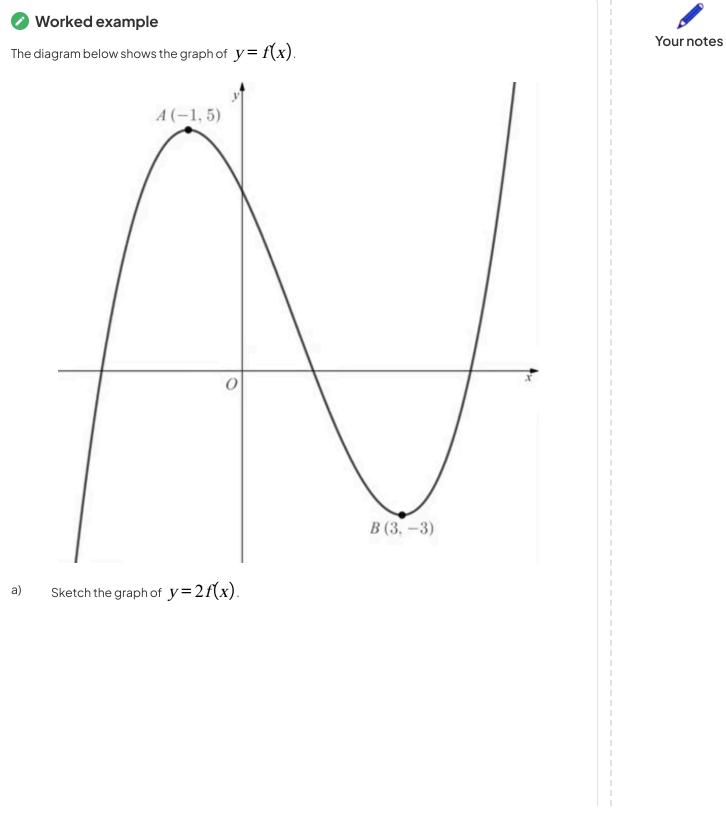
$$\frac{y}{p} = f(x)$$

- This is often rearranged to y = pf(x)
- The x-coordinates stay the same
- The y-coordinates change
- They are multiplied by p
- The coordinates (x, y) become (x, py)
- Horizontal asymptotes change
 - y = k becomes y = pk
- Vertical asymptotes stay the same



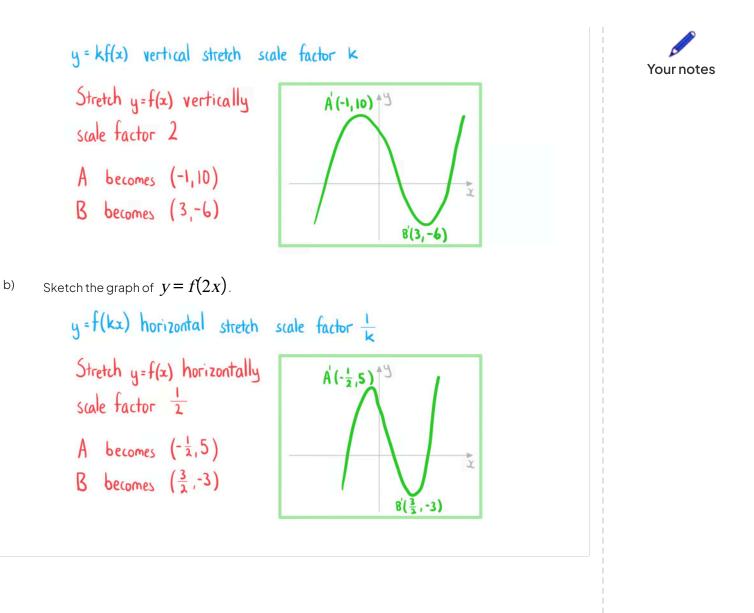
Examiner Tip

- To get full marks in an exam make sure you use correct mathematical terminology
 - For example: Stretch vertically by scale factor 1/2
 - Do not use the word "compress" in your exam



Page 22 of 33

🗲 SaveMyExams Head to www.savemyexams.com for more awesome resources



Page 23 of 33

2.6.4 Composite Transformations of Graphs

Composite Transformations of Graphs

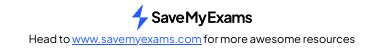
What transformations do I need to know?

- y = f(x + k) is horizontal translation by vector $\begin{pmatrix} -k \\ 0 \end{pmatrix}$
 - If k is positive then the graph moves left
 - If k is **negative** then the graph moves **right**
- y = f(x) + k is vertical translation by vector $\begin{pmatrix} 0 \\ k \end{pmatrix}$
 - If k is **positive** then the graph moves **up**
 - If k is **negative** then the graph moves **down**
- y = f(kx) is a **horizontal stretch** by scale factor $\frac{1}{k}$ centred about the y-axis
 - If k > 1 then the graph gets closer to the y-axis
 - If **0 < k < 1** then the graph gets **further** from the *y*-axis
- y = kf(x) is a **vertical stretch** by scale factor k centred about the x-axis
 - If k > 1 then the graph gets further from the x-axis
 - If **0 < k < 1** then the graph gets **closer** to the *x*-axis
- y = f(-x) is a **horizontal reflection** about the y-axis
 - A horizontal reflection can be viewed as a special case of a horizontal stretch
- y = -f(x) is a vertical reflection about the x-axis
 - A vertical reflection can be viewed as a special case of a vertical stretch

How do horizontal and vertical transformations affect each other?

- Horizontal and vertical transformations are independent of each other
 - The horizontal transformations involved will need to be applied in their correct order
 - The vertical transformations involved will need to be applied in their correct order
- Suppose there are two horizontal transformation H₁ then H₂ and two vertical transformations V₁ then
- V_2 then they can be applied in the following orders:
 - Horizontal then vertical:
 - $\bullet H_1H_2V_1V_2$
 - Vertical then horizontal:
 - $V_1V_2H_1H_2$
 - Mixed up (provided that H₁ comes before H₂ and V₁ comes before V2):
 - H₁V₁H₂V₂
 - $H_1V_1V_2H_2$
 - V₁H₁V₂H₂

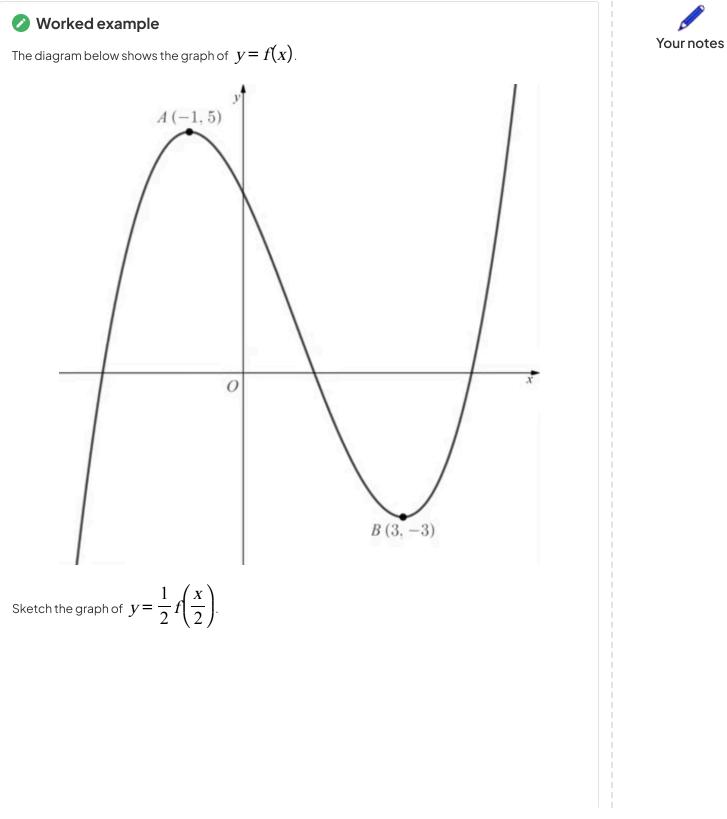
Page 24 of 33



• $V_1 H_1 H_2 V_2$

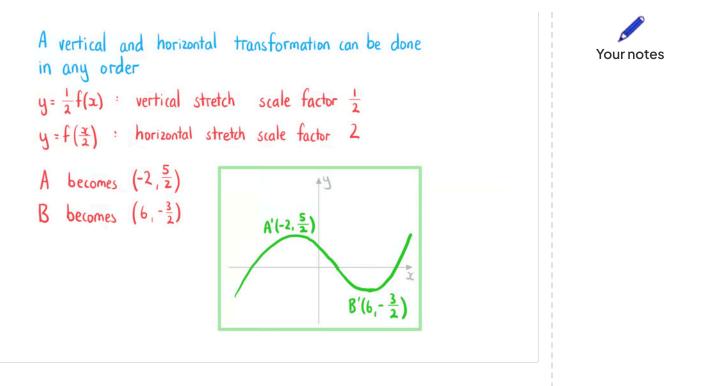
Examiner Tip

• In an exam you are more likely to get the correct solution if you deal with one transformation at a time and sketch the graph after each transformation



Page 26 of 33

SaveMyExams Head to www.savemyexams.com for more awesome resources

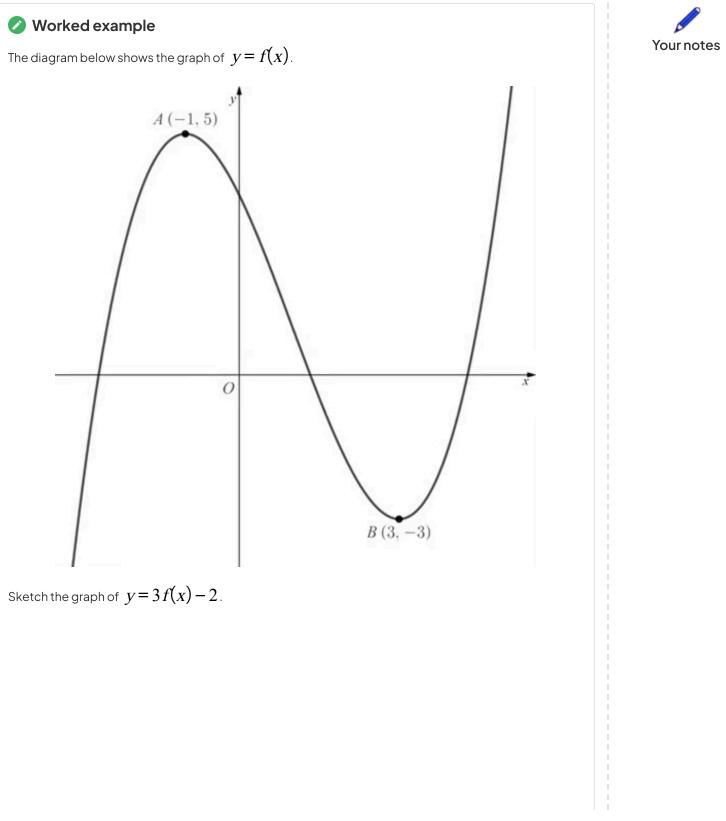


Composite Vertical Transformations af(x)+b

How do I deal with multiple vertical transformations?

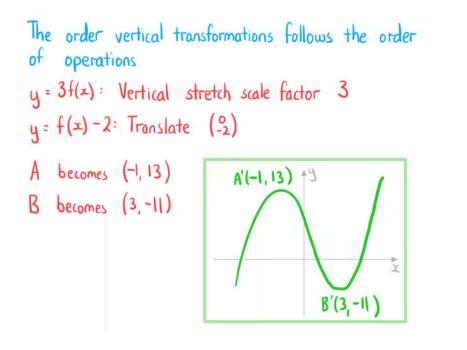
- Order matters when you have more than one vertical transformations
- If you are asked to find the equation then **build up the equation** by looking at the transformations in order
 - A vertical stretch by scale factor a followed by a translation of $\begin{pmatrix} 0 \\ h \end{pmatrix}$
 - Stretch: y = af(x)
 - Then translation: y = [af(x)] + b
 - Final equation: y = af(x) + b
 - A translation of $\begin{pmatrix} 0 \\ b \end{pmatrix}$ followed by a vertical stretch by scale factor *a*
 - Translation: y = f(x) + b
 - Then stretch: y = a[f(x) + b]
 - Final equation: y = af(x) + ab
- If you are asked to determine the **order**
 - The order of vertical transformations follows the order of operations
 - First write the equation in the form y = af(x) + b
 - First stretch vertically by scale factor a
 - If a is negative then the **reflection and stretch** can be **done in any order**
 - Then translate by $\begin{pmatrix} 0 \\ b \end{pmatrix}$

Page 28 of 33



Save My Exams

Head to www.savemyexams.com for more awesome resources



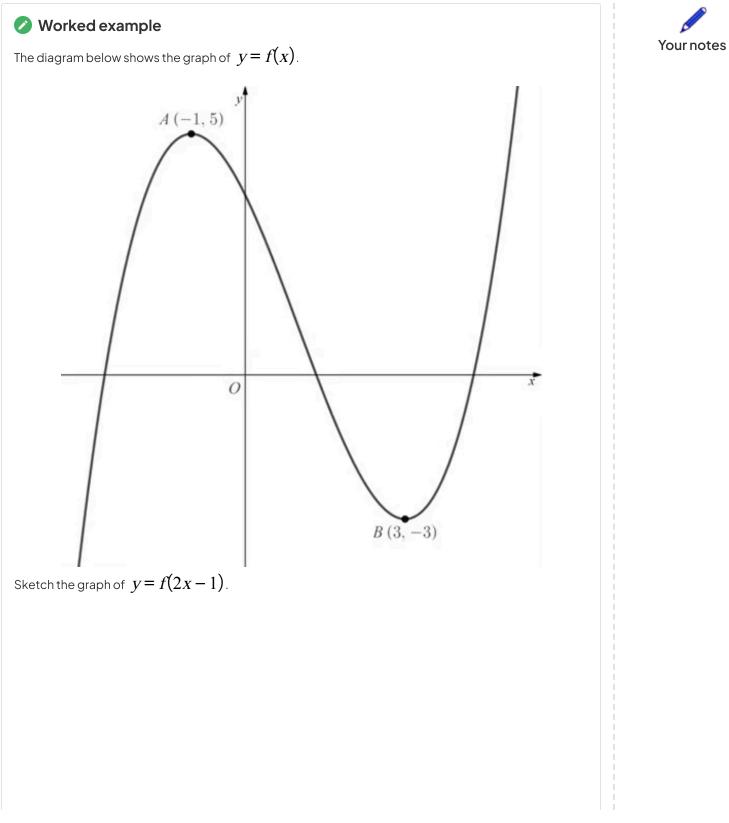
Page 30 of 33

Fave My Exams Head to www.savemyexams.com for more awesome resources

Composite Horizontal Transformations f(ax+b)

How do I deal with multiple horizontal transformations?

- Order matters when you have more than one horizontal transformations
- If you are asked to find the equation then build up the equation by looking at the transformations in order
 - A horizontal stretch by scale factor $\frac{1}{a}$ followed by a translation of $\begin{pmatrix} -b \\ 0 \end{pmatrix}$
 - Stretch: y = f(ax)
 - Then translation: y = f(a(x+b))
 - Final equation: y = f(ax + ab)
 - A translation of $\begin{pmatrix} -b \\ 0 \end{pmatrix}$ followed by a horizontal stretch by scale factor $\frac{1}{a}$
 - Translation: y = f(x + b)
 - Then stretch: y = f((ax) + b)
 - Final equation: y = f(ax + b)
- If you are asked to determine the **order**
 - First write the equation in the form y = f(ax + b)
 - The order of horizontal transformations is the reverse of the order of operations
 - First translate by $\begin{pmatrix} -b \\ 0 \end{pmatrix}$
 - Then stretch by scale factor $\frac{1}{2}$
 - If a is negative then the **reflection and stretch** can be **done in any order**



Page 32 of 33

