

IB · **DP** · **Chemistry**

Structured Questions: Paper 2

8.1 Theories & Reactions of Acids & Bases

8.1.1 Brønsted-Lowry Acids & Bases / 8.1.2 Conjugate Acid-Base Pairs / 8.1.3 Characteristic Reactions of Acids / 8.1.4 Neutralization

Total Marks	/90
Hard (4 questions)	/33
Medium (5 questions)	/33
Easy (4 questions)	/24

Scan here to return to the course or visit savemyexams.com

Easy Questions

		(2 marks
(d)	Explain, using the Brønsted-Lowry theory, how water can act either as an acid	or a base.
		(1 mark
	$CO_3^{2^-}(aq) + H^+(aq) \rightleftharpoons HCO_3^-(aq)$	
(c)	Which species in the following equation is acting as a Brønsted-Lowry acid.	
		(1 mark
	$HSO_4^-(aq) + H_3O^+(aq) \rightleftharpoons H_2SO_4(aq) + H_2O(l)$	
(b)	Which species in the following reaction acts as a Brønsted-Lowry base.	
		(1 mark
Ι (α)	Define a branstea-zowry acia.	
1 (a)	Define a <i>Brønsted–Lowry acid</i> .	

		(2 marks)
		[1]
	ii) State the conjugate base of the hydroxide ion, OH ⁻	[1]
	ii) State the conjugate base of the hydroxide ion OUT	[1]
(d)	i) State what is meant by the term conjugate base.	F43
<i>(</i> b)		
		(1 mark)
	Identify two different amphiprotic species in the above reactions.	
	HCO_3^- (aq) + H_2O (l) \rightleftharpoons CO_3^{2-} (aq) + H_3O^+ (aq)	
(0)	HCO_3^- (aq) + H_2O (I) $\rightleftharpoons H_2CO_3$ (aq) + OH^- (aq)	
(c)	The equations for two acid-base reactions are given below.	
		(2 marks)
	Brønsted–Lowry acid:	
	Brønsted–Lowry base:	
	Brønsted-Lowry acid.	
(b)	Write an equation to show ammonia, NH ₃ , acting as both a Brønsted–Lowry	/ base and a
		(1 mark)
2 (a)	Describe the difference between an amphiprotic and amphoteric species.	
2 (2)	Describe the difference between an amphipretic and amphetoric species	

3 (a)	Stat	e an equation for the reaction of magnesium carbonate with dilute hydro	ochloric acid.
(b)	Stat	e an equation for the reaction of lithium oxide with dilute nitric acid.	(1 mark)
(c)	Whi	ch acid and base would be required to produce ammonium sulfate, (NH $_4$	(1 mark)) ₂ SO ₄
			(2 marks)
(d)	Nitr	ic acid and calcium hydroxide react together.	
	i)	State the type of reaction that takes place.	
	::\	State the formula of the products of the reaction	[1]
	ii)	State the formula of the products of the reaction.	[1]
	iii)	State the sign of the enthalpy change for this reaction.	
			[1]
	***************************************		(3 marks)

4 (a)	Identify one conjugate acid-base pair in the reaction.	
	$OCl^{-}(aq) + H_{2}O(l) \rightleftharpoons OH^{-}(aq) + HOCl(aq)$	
		(1 mark)
(b)	State an equation for the reaction of aluminium hydroxide with dilute sulfuric a	acid.
		(1 mark)
(c)	State an equation for the reaction of calcium hydrogencarbonate with dilute phacid, $\rm H_3PO_4$.	nosphoric
		(1 mark)
(d)	Write the formulae for the following:	
	i) Carbonic acid. [1]	
	ii) Ammonium sulfate. [1]	
	iii) Magnesium ethanoate. [1]	
		(3 marks)

Medium Questions

1 (a) Malonic acid is a naturally occurring acid found in fruits and vegetables and is shown in Figure 1.

Figure 1

The first dissociation of malonic acid is:

$$C_3H_4O_4$$
 (aq) + H_2O (l) = $C_3H_3O_4^-$ (aq) + H_3O^+ (aq)

Identify one conjugate acid-base pair from the equation.

(1 mark)

State, with a reason, the strength of malonic acid.

(3 marks)

(c) The anion $C_3H_3O_4$ may be classified as *amphiprotic*. Explain the meaning of *amphiprotic* and write equations, using $C_3H_3O_4$, to illustrate your answer.

(1 mark)

(d)	Under the right conditions, malonic acid can react with ethanol to form diethyl malonate, a diester.
	Draw a displayed formula for diethyl malonate showing all the bonds.
	(1 mark)

2 (a) Salicylic acid has the structure shown below in **Figure 1**.

Figure 1

	Draw the structure of the conjugate base of salicylic acid, showing all the atoms and all the bonds.
	(1 mark)
(b)	Predict what would be seen if a small amount of copper (II) oxide was added to an aqueous solution of salicylic acid, HOC_6H_4COOH , and warmed.
	Write a balanced equation for the reaction.
	(2 marks)
(c)	Suggest, with a reason, whether salicylic acid is likely to be soluble in water.
	(1 mark)
(d)	Determine the relative molecular mass, M_r , of salicylic acid using Table 6 from the Data book.
	(1 mark)

3 (a)	· •	•	ns between ethanoic acid and d aluminium hydroxide, Al(OH) ₃ .
			(3 marks
(b)	In Table 1 below, suggest the make the specified salts.	ne names and formulae of t	he acids and bases needed to
		Table 1	
	Acid	Base	Salt
			Copper nitrate, Cu(NO ₃) ₂
			Calcium phosphate, Ca ₃ (PO ₄) ₂
			(2 marks
(c)	The ethanoate ion, CH ₃ COC contain carbon oxygen bon	-	the ethoxide ion, CH ₃ CH ₂ O ⁻ , all
	Deduce the order in carbon explain your answer.	to oxygen bond length fror	n shortest to longest and
			(3 marks

	(2 marks)
	and the bonds that cause them.
	Using Table 26 of the Data book, state the wavenumber range of these absorptions
(d)	Ethanoic acid, CH_3COOH , shows two absorptions in an infrared spectrum that are not present in the spectrum of ethanol.

ı (a)	in water and behaves as a Brønsted–Lowry acid.	oie
	i) Define the term Brønsted–Lowry acid.	
	ii) State one difference between Brønsted–Lowry acids and the traditional theo acids as substances that dissociate in water to form hydrogen ions.	ry of
	(2 n	narks)
(b)	The systematic IUPAC name for glycolic acid is 2-hydoxyethanoic acid.	
	Draw the structural formula for its conjugate base, showing all the atoms and bon	ds.
	(1	mark)
(c)	Write an equation for the reaction between glycolic acid, $C_2H_4O_3$, and limescale, C_3 State and explain one observation you would make.	aCO ₃ .
	(2 n	narks)
(d)	State one reason why you would use glycolic acid to remove the limescale in a kett at home, but not hydrochloric acid.	le
	(1	mark)

5 (a)	An alkaline solution is formed when sodium hydrogencarbonate is dissolved in water.
	Write an equation for the reaction and explain why the solution is alkaline.
	(2 marks)
(b)	State whether the HCO_3^- ion is behaving as a Brønsted–Lowry acid or as a base and give a reason for your answer.
	(2 marks)
(c)	Carbon dioxide gas dissolves in rainwater to form carbonic acid. State the formula of the conjugate base of carbonic acid.
	(1 mark)
(d)	Carbonic acid and sulfuric acid can be described as <i>diprotic</i> acids. Explain the meaning of <i>diprotic</i> .
	(1 mark)

Hard Questions

Explain why an ammonium ion can not behave as a Brønsted-Lowry base.
(2 marks)
State and explain the acid-base character of aqueous ammonia at 298 K.
(2 marks)
Acids can be classed as monoprotic, diprotic and triprotic. Sulfuric acid is a diprotic acid.
 State the equation for the first ionisation step of sulfuric acid, including state symbols.
ii) Label the conjugate acid and base pairs in your answer to part i).
(2 marks)
The second ionisation step is for the ionisation of sulfuric acid is as follows.
HSO_4^- (aq) + H_2O (aq) = SO_4^{2-} (aq) + H_3O^+ (aq)
Suggest why the second ionisation step reaches equilibrium.
(1 mark)

2 (a)	Sodium hydrogen carbonate solution, NaHCO $_3$ (aq) , can act as an amphiprotic species. State the equation for the reaction fo NaHCO $_3$ (aq) with the following compounds:			
	i)	Sodium hydroxide solution.	[1]	
	ii) 	Hydrochloric acid.	[1]	
	······		(2 marks)	
(b)	Usir	ng your answer to part a) i) and ii), explain why NaHCO ₃ is amphiprotic.		
			(3 marks)	
(c)	Phosphine is usually prepared by heating white phosphorus, one of the allotropes of phosphorus, with concentrated aqueous sodium hydroxide.			
	The	equation for the reaction is.		
		P_4 (s) + 3OH ⁻ (aq) + 3H ₂ O (l) \rightarrow PH ₃ (g) + 3H ₂ PO ₂ ⁻ (aq)		
		ntify the amphiprotic species in this reaction giving the formulas of both verted to when it behaves in this manner.	species it is	
			(3 marks)	

i)	Calculate the amount, in mol, of white phosphorus used.	
ii)	This phosphorus was reacted with 50.0 cm ³ of 3.00 mol dm ⁻³ aqueous sodium hydroxide. Deduce, showing your working, which was the limiting reagent.	[1]
iii)	Determine the excess amount, in mol, of the other reagent.	[1] [1]
iv)	Using section 2 of the data booklet. Determine the volume of phosphine, measured in cm ³ at standard temperature and pressure, that was produced.	ניו
		[1]
		•••••
•••••	(4 mar	ks)

(d) 1.68 g of white phosphorus was used to make phosphine

3 (a)	Oxalic acid, $H_2C_2O_4$, is a weak diprotic acid and can be used in titrations. State the equation for the reaction of oxalic acid with sodium hydroxide.
(b)	(2 marks) The ionisation of oxalic acid occurs in two steps. State equations for both of these steps.
	(2 marks)
(c)	Tartaric acid shown below behaves as a Brønsted-Lowry acid when it reacts with calcium hydroxide, Ca(OH) ₂ . Sketch the structure of the salt formed from this reaction. OH O
	НО ОН
	(3 marks)

(a)	Using ionic equations state how ${\rm HPO_4}^{2\text{-}}$ can behave as an amphiprotic and amphoteric species.			
		(4 marks)		
(b)	Gallium oxide behaves as an amphoteric oxide. State two equations to show oxide reacts with a strong monoprotic acid and strong base.	how gallium		
	Reaction with strong monoprotic acid	· 		
	Reaction with strong base			
		(2 marks)		
(c)	Identify the Brønsted-Lowry acids in the following reaction.			
	$CH_3CH_2O^-(aq) + H_2O(l) \rightleftharpoons CH_3CH_2OH(aq) + OH^-(aq)$			
		(1 mark)		
		(1 r		